

Vorwort

Das Fachstudium in Mathematik/Technomathematik/Wirtschaftsmathematik an der Universität Bayreuth besteht aus Basis-, Aufbau-, Vertiefungs- und Spezialisierungsmodulen, deren Modulbeschreibungen Sie hier finden. Für das Vertiefungsmodul "Vertiefte Kenntnisse in Mathematik" und das Spezialisierungsmodul "Spezialkenntnisse in Mathematik" stellen wir Ihnen ferner eine eine Auswahl der wählbaren Vertiefungs- bzw. Spezialveranstaltungen vor.

Im Sinne einer lebendigen und forschungsnahen Lehre ist es nicht möglich, ja nicht einmal angebracht, *alle* Vertiefungs- und Spezialveranstaltungen in dieses Modulhandbuch mit aufzunehmen, die an der Universtät Bayreuth jemals angeboten werden könnten.

Das vollständige Angebot an Vertiefungs- und Spezialveranstaltungen wird vor jedem Semester im jeweils aktuellen Vorlesungsverzeichnis und im jeweils aktuellen kommentierten Vorlesungsverzeichnis veröffentlicht. Die Modalitäten bzgl. Prüfung etc. werden analog wie in den hier veröffentlichten Vertiefungsveranstaltungen sein.

Auf diese Weise ist es insbesondere möglich, stets auf Basis aktueller Erwägungen Vertiefungs- und Spezialveranstaltungen anzubieten, die besonders geeignet sind, interessante Seminare und Abschlussarbeiten vorzubereiten.

Ferner enthält dieses Modulhandbuch nur solche Anwendungsfachmodule, die für die Studiengänge Techno- und Wirtschaftsmathematik Pflichtmodule sind. Wahlmöglichkeiten für Wahlpflichtmodule in den Anwendungsfächern finden sich in den Modulhandbüchern der entsprechenden Studiengänge, die wir hier nicht reproduzieren wollen. Diese kleine Unbequemlichkeit entsteht aus den vielfältigen Wahlmöglichkeiten, die wir Ihnen in den Anwendungsfächern zugestehen.

Ihr Studiengangsmoderator hilft Ihnen gern dabei, geeignete Veranstaltungen aus den aktuell angebotenen Veranstaltungen zur Ableistung von Wahlpflichtmodulen auszusuchen.

Wie in der Mathematik seit je her üblich, bedeutet die Lehrform "Übung" eine Kleingruppenübung, deren Gruppengröße in Schnitt bei 15 liegen sollte. Genauso sind mathematische Seminare ("Hauptseminare" in diesem Modulhandbuch) seit je her konzipiert für 15 Teilnehmerinnen bzw. Teilnehmer.

Das Konzept der Mathematik-Studiengänge sieht vor, dass allgemeine Schlüsselqualifikationen in den einzelnen Veranstaltungen integriert erworben werden.

In Anhang G geben wir einen Überblick, wo welche Schlüsselqualifikation in welchem Umfang eine Rolle spielt. Die Quantifizierung ist natürlich nur ein Anhaltspunkt, denn jeder gute Dozent und jede gute Dozentin wird versuchen, bei den Studierenden individuell den Bedarf an Anleitung in fächerübergreifenden Kompetenzen zu ermitteln.

Die Mitglieder der Fachgruppe Mathematik

14. Januar 2013

Inhaltsverzeichnis

I	Bacnelor-Module	6
Α.	Basismodule	7
	A1. Analysis	7
	A2. Lineare Algebra	8
	A3. Vektoranalysis	ç
	A4. Funktionentheorie	10
	A5. Programmierkurs	11
	A6. Mathematik am Computer	12
В.	Aufbaumodule	13
	RM1: Reine Mathematik 1	13
	Einführung in die Zahlentheorie und algebraische Strukturen	13
	Einführung in die Geometrie: Projektive und Algebraische Geometrie	14
	RM1/AM1: Reine/Angewandte Mathematik 1	15
	Einführung in die Gewöhnlichen Differentialgleichungen	15
	AM1: Angewandte Mathematik 1	16
	Einführung in die Numerik	16
	Einführung in die Stochastik	17
	RM2: Reine Mathematik 2	18
	Einführung in die Algebra	18
	Einführung in die Geometrie: Differentialgeometrie und Topologie	19
	RM2/AM2: Reine/Angewandte Mathematik 2	20
	Einführung in die Computeralgebra	20
	AM2: Angewandte Mathematik 2	21
	Einführung in die Optimierung	21
	Einführung in die Partiellen Differentialgleichungen	22
	Einführung in die Statistik	23
	Wirtschaftsmathematik	24
	Graphen- und Netzwerk-Algorithmen	24
	Praktikum	25
C.	Vertiefungsmodule	26
	Erste vertiefte Kenntnisse in Mathematik	26
	Bachelor-Hauptseminar	27
	Praktikumsseminar	28
D.	Bachelorarbeit	29
	Kolloquium zur Bachelorarbeit	29
E.	Anwendungsfächer	30
	E0. Multimediakompetenz	30
	Multimediakompetenz	30
	Objektorientiertes Programmieren	
	E1 Physik	32

	E2. Informatik	33
	Informatik für Mathematiker	
	Algorithmen und Datenstrukturen	34
	Software-Praktikum	35
	Datenbanken	36
	E3. Wirtschaftswissenschaften	38
	E4. Philosophy & Economics	39
	E5. Ingenieurwissenschaften	40
	Technische Mechanik	40
	Elektrotechnik/Regelungstechnik	41
	Strömungsmechanik	
	E6. Geoökologie	
	E7. Biologie	
II	Master-Module	46
Δ.	Vertiefungsmodule Mathematik	47
	Vertiefte Kenntnisse in Mathematik	
	Vertiefungsvorlesungen aus Höhere Analysis und Anwendungen	
	Dynamische Systeme	
	Höhere Analysis	
	Integralgleichungen/Grundlagen der Funktionalanalysis	
	Partielle Differentialgleichungen—Funktionalanalytische Methoden	
	Aktuelle Entwicklungen aus Höhere Analysis und Anwendungen	
	Vertiefungsvorlesungen aus Variationsrechnung/Optimale Steuerungen	
	Optimale Steuerung gewöhnlicher Differentialgleichungen	
	Optimale Steuerung partieller Differentialgleichungen	
	Variationsrechnung	
	Variationsrechnung und Optimale Steuerungen 1	
	Variationsrechnung und Optimale Steuerungen 2	
	Aktuelle Entwicklungen aus VarRechn./Opt. Steuer.	
	Vertiefungsvorlesungen aus Algebra/Zahlentheorie/Diskrete Mathematik	
	Ringe und Moduln	59
	Algebraische Zahlentheorie	
	Kryptographie	
	Codierungstheorie	62
	Kombinatorik und Diskrete Strukturen	63
	Gruppentheorie	64
	Aktuelle Entwicklungen aus Algebra/Zahlentheorie/Diskrete Mathematik	65
	Vertiefungsvorlesungen aus Höhere Geometrie / Komplexe Analysis	66
	Kommutative Algebra	66
	Riemannsche Flächen	67
	Algebraische Topologie	68
	Höhere Funktionentheorie	69
	Riemannsche Mannigfaltigkeiten und Liesche Gruppen	70
	Algebraische Geometrie	
	Komplexe Differentialgeometrie	
	Komplexe Mannigfaltigkeiten	
	Aktuelle Entwicklungen aus Höhere Geometrie/Komplexe Analysis	
	Vertiefungsvorlesungen aus Numerische Mathematik	
	Numerische Methoden für gewöhnliche Differentialgleichungen	
	Einführung in die Numerik partieller Differentialgleichungen	
	Numerische Methoden der Finanzmathematik	
		, ,

Mathematische Modellierung	/8
Aktuelle Entwicklungen aus der Numerischen Mathematik	79
Vertiefungsvorlesungen aus Stochastik/Statistik	80
Mathematische Statistik	80
Asymptotische Statistik	81
Lineare Modelle und Multivariate Analysis	82
Stochastische Prozesse	83
Support Vector Machines	84
Wahrscheinlichkeitstheorie	85
Zeitreihenanalyse	86
Aktuelle Entwicklungen aus der Stochastik	87
Vertiefungsvorlesungen aus der Optimierung	88
Ganzzahlige Lineare Optimierung	88
Online-Optimierung	89
Nichtlineare Optimierung	90
Kontrolltheorie	91
Aktuelle Entwicklungen aus der Optimierung	92
Master-Hauptseminar	93
D. Constallation and a constallation of the constal	0.4
B. Spezialisierungsmodule Mathematik	94
Spezialkenntnisse in Mathematik	
Spezialvorlesungen aus der Algebra und Zahlentheorie	
Rationale Punkte auf Kurven	
Spezialvorlesungen aus der Numerik	
Stochastische Dynamische Optimierung	
Singulär gestörte Differentialgleichungen	
Numerik differential-algebraischer Gleichungen	
Spezialvorlesungen aus der Optimierung	
Stochastische Lineare Optimierung	
Innere Punkte Verfahren der Optimierung	
Lernen durch Lehren	101
A./B. Vertiefungsmodule/Spezialisierungsmodule	102
Master-Praktikum	102
C. Masterarbeit	103
Kolloquium zur Masterarbeit	103
D. und E. Anwendungsfächer	104
III Anhang	105
Anhang A: Generischer Studienplan Bachelor Mathematik	106
Anhang B: Generischer Studienplan Bachelor Technomathematik	108
Anhang C: Generischer Studienplan Bachelor Wirtschaftsmathematik	110
Anhang D: Generischer Studienplan Master Mathematik	112
Anhang E: Generischer Studienplan Master Technomathematik	114
Anhang F: Generischer Studienplan Master Wirtschaftsmathematik	116
·	
Anhang G: Ausweisung von Schlüsselqualifikationen	118

Teil I Bachelor-Module

Modulname	Analysis (Analysis)
Modultyp	Basismodul Bachelor (1. Studienjahr)
Fachgebiet	Analysis
Modulverantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Verständnis und Beherrschung der grundlegenden Konzepte der Analysis
	Beherrschung der Verfahren zur Berechnung von Grenzwerten, Ableitungen, Integralen
	Beherrschung der grundlegenden Beweismethoden der Analysis
	Verständnis des anschaulichen Hintergrunds der Analysis
	Fähigkeit, eigene mathematische Überlegungen schriftlich und mündlich angemessen darzustellen
Inhalt	reelle Zahlen und deren Vollständigkeit
	$ullet$ einfache topologische Grundkonzepte in $\mathbb R$ und $\mathbb R^n$, insbesondere Konvergenz von Folgen und Reihen, offene, abgeschlossene und kompakte Mengen, stetige Funktionen, metrische Räume
	Grundlagen der Differentialrechnung in einer und mehreren reellen Variablen
	 Grundlagen der Integralrechnung, insbesondere Riemann-Integral in einer reeellen Variablen und mehrdimensionales Lebesgue-Integral mit den zugehörigen Konvergenzsätzen
Dauer	2 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 2 Semester
LP	18
Arbeitsaufwand	je Semester: Wöchentlich 4 h Vorlesung plus 3 h Nachbereitung = 105 h; 2 h Übung plus 5 h Vor- und Nachbereitung = 105 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, ; Gesamt je Semester: 270 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Prüfungsklausur am Ende des zweiten Semesters; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A1 für die Bachelorstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik
Angebotsturnus	jährlich beginnend im Wintersemester

Modulname	Lineare Algebra (Linear Algebra)
Modultyp	Basismodul Bachelor (1. Studienjahr)
Fachgebiet	Algebra/Geometrie
Modulverantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis und Beherrschung der grundlegenden Konzepte der linearen Algebra
	 Beherrschung der Verfahren zur Berechnung von Basen, Normalformen von Matrizen und Eigenwerten und Eigenvektoren
	 Verständnis des geometrischen Hintergrunds der linearen Algebra
	Beherrschung der grundlegenden Beweismethoden der linearen Algebra
Inhalt	Begriff der Gruppe und des Körpers, reelle und komplexe Zahlen
	Vektorräume, Unterräume, Basis
	Matrizen und lineare Abbildungen
	Lineare Gleichungssysteme; Lösungsverfahren
	Dualräume und Quotientenräume
	Determinanten, symmetrische Gruppe
	Eigenwerte, Eigenvektoren, Ähnlichkeit, Diagonalisierbarkeit, Trigonalisierbarkeit
	Euklidische, unitäre Vektorräume und deren Isometrien
	Quaternionen und orthogonale Gruppen
	Hauptachsentransformation, Quadriken und projektive Räume
	Jordansche Normalform
	Elemente der multilinearen Algebra
Dauer	2 Semester
Sprache	deutsch
Lehrformen LP	Vorlesung (4) mit Übungen (2) über 2 Semester 18
Arbeitsaufwand	je Semester: Wöchentlich 4h Vorlesung plus 3h Nachbereitung = 105h;
Aibeitsauiwanu	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien;
	Gesamt je Semester: 270 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Prüfungsklausur am Ende des zweiten Semesters; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A2 für die Bachelorstudiengänge Mathematik,
	Wirtschaftsmathematik und Technomathematik
Angebotsturnus	jährlich beginnend im Wintersemester

Modulname	Vektoranalysis (Vector Analysis)
Modultyp	Basismodul Bachelor (ab 3. Fachsemester)
Fachgebiet	Analysis
Modulverantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	
Lerriziele	Fähigkeit, Kurven- und Oberflächenintegrale zu berechnen
	Verständnis für die Bedeutung der verschiedenen Formen dieser Integrale
	 Verständnis für den Zusammenhang zwischen konkreten Kurven- und Oberflächenintegrale und dem Formalismus der Differentialformen
	 Verständnis für den Zusammenhang zwischen den Begriffen Gradient, Divergenz, Rotation und dem Formalismus der Differentialformen
Inhalt	Integration von Differentialformen auf Untermannigfaltigkeiten, insbesondere Kurven- und Oberflächenintegrale
	 Integralsatz von Stokes für Differentialformen und sein Zusammenhang zu den elementaren Integralsätzen von Gauß und Stokes
	Wegunabhängigkeit von Kurvenintegralen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;
	30 h Prüfungsvorbereitung, 15 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene	Basismodule Analysis und Lineare Algebra
Vorkenntnisse	
Leistungsnachweise	Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A3 für die Bachelorstudiengänge Mathematik
	und Technomathematik
	Voraussetzung für viele weiterführende Module aus der Reinen und Angewandten Mathematik
Angebotsturnus	jährlich im Wintersemester

Modulname	Funktionentheorie
	(Complex Analysis – One Variable)
Modultyp	Basismodul
Fachgebiet	Analysis / Geometrie
Modulverantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis der grundlegenden Eigenschaften und Prinzipien holomorpher Funktionen
	Beherrschung der Verfahren zur Berechnung von komplexen Wegintegralen, Potenzreihenentwicklungen
	Beherrschung der grundlegenden Beweismethoden der Funktionentheorie
Inhalt	Wegintegrale
	Cauchyscher Integralsatz und Cauchysche Integralformel,
	Potenzreihenentwicklung,
	Identitätssatz, Maximumprinzip, Gebietstreue,
	Einführung in Laurentreihen und isolierte Singularitäten
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1) über 1 Semester
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;
	30 h Prüfungsvorbereitung, 15 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene	Basismodul Analysis
Vorkenntnisse	
Leistungsnachweise	Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A4 für die Bachelorstudiengänge Mathematik
	und Technomathematik
	Voraussetzung für viele weiterführende Module aus der Reinen und Angewandten Mathematik
Angebotsturnus	jährlich im Sommersemester

Modulname	Programmierkurs (Programming Language)
Modultyp	Basismodul Bachelor (ab 1. Fachsemester)
Fachgebiet	(4.1 1.1 (4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Modulverantwortliche	Math. V (Numerische Mathematik)
Lernziele	Fähigkeit zur Auswahl passender vorhandener oder selbst definierter Datentypen
	 Fähigkeit zur Implementierung eines Programms durch die Wahl geeigneter Kontrollstrukturen und durch die Untergliederung in Module über den Entwurf zugehöriger Funktionen
	 Verständnis der verschiedenen Konzepte bei der Parameterübergabe und Ergebnisrückgabe in Funktionen
	Fähigkeit zur effizienten und strukturierten Programmierung sowie zur Entwicklung portabler Programme
	Kenntnisse im Umgang mit Zeigern und dynamisch angelegtem Speicher
Inhalt	elementare Datentypen und Operatoren
	(un-)formatierte Ein- und Ausgabe
	Kontrollstrukturen (Schleifen, Bedingungen,)
	zusammengesetzte und selbst definierte Datentypen (Arrays, Strings,)
	 Adressen und Zeiger (Dereferenzierung, Zeigerarithmetik, dynamische Speicherverwaltung)
	 Funktionen (Funktionsprototypen, Aufruf, Rekursion, Übergabe mit call by value/reference, Rückgabe)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	3
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	1 h Übung plus 2 h Vor- und Nachbereitung = 45 h; Gesamt: 90 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A5 für alle Bachelorstudiengänge in der Mathematik
Angebotsturnus	jährlich im Wintersemester

Modulname	Mathematik am Computer (Mathematics on the Computer)
Modultyp	Basismodul Bachelor (2. oder 3. Fachsemester)
Fachgebiet	
Modulverantwortliche	Math. V (Numerische Mathematik)
Lernziele	 Fähigkeit zur Bedienung eines modernes Computermathematiksystem (MAPLE, MATHEMATICA, MATLAB, SCILAB,) Fähigkeit zur Lösung ausgewählter mathematischer Probleme aus dem Bereich der Basismodule Analysis und Lineare Algebra am Computer Fähigkeit zur Visualisierung mathematischer Sachverhalte am Computer
Inhalt	Einführung in ein modernes Computermathematiksystem (MAPLE, MATHEMATICA, MATLAB, SCILAB,)
	Computergestützte Lösung von Aufgaben aus den Bereichen
	 Matrix— und Vektorrechnung
	- Geometrie
	Differential- und Integralrechnung
	Visualisierung von Funktionen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	3
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	1 h Übung plus 2 h Vor- und Nachbereitung = 45 h; Gesamt: 90 h.
Empfohlene	Analysis, Lineare Algebra, Programmierkurs; Analysis II und Lineare Algebra II können parallel
Vorkenntnisse	gehört werden
Leistungsnachweise	Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Pflichtmodul A6 für den Bachelorstudiengang Mathematik, Teil des Aufbaumoduls Graphen- und Netzwerk-Algorithmen BW2b für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	mindestens jährlich im Sommersemester

RM1: Reine Mathematik 1

Modulname	Einführung in die Zahlentheorie und algebraischen Strukturen (Number Theory and Algebraic Structures)
Modultyp	Aufbaumodul
Fachgebiet	Algebra
Modulverantwortliche	Math. VIII (Algebraische Geometrie), Math. II (Computeralgebra)
Lernziele	Beherrschung einiger grundlegender Beweistechniken der elementaren Zahlentheorie
	Verständnis der grundlegenden Konzepte von algebraischen Strukturen
Inhalt	Teilbarkeitslehre, euklidischer Algorithmus
	Grundzüge der Ringtheorie, Polynomringe, Irreduzibilität
	Chinesischer Restsatz, Restklassenringe
	Legendre-Symbol, Quadratisches Reziprozitätsgesetz
	Natürliche Zahlen als Summen von zwei oder vier Quadraten
	Klassifikation endlich erzeugter Abelscher Gruppen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Voraussetzung	Lineare Algebra
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-RM1, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Wahlpflichtmodul BW1 für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	Wintersemester

Modulname	Einführung in die Geometrie: Projektive und Algebraische Geometrie (Projective and Algebraic Geometry)
Modultyp	Aufbaumodul Bachelor RM1
Fachgebiet	Geometrie
Modulverantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis des Konzeptes des affinen/projektiven Raumes.
	Verständnis des Konzeptes und einiger grundlegender Resultate über ebene algebraische Kurven
	Beherrschung der grundlegenden Beweistechniken
	Verständnis wichtiger Beispiele
Inhalt	Affine und projektive Geometrie
	Klassische Sätze (z. B. Sätze von Desargues, Pappos, Pascal)
	Ebene algebraische Kurven
	Tangenten, Singularitäten, Wendepunkte
	Satz von Bezout und lineare Systeme
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2) über 1 Semester
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Basismodule Lineare Algebra, Analysis
Vorkenntnisse	
Leistungsnachweise	Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-RM1, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Voraussetzung für Vertiefungsmodule aus der Algebraischen Geometrie
Angebotsturnus	jährlich im Wintersemester

RM1: Reine Mathematik 1

AM1: Angewandte Mathematik 1

Modulname	Einführung in die Gewöhnlichen Differentialgleichungen (Introduction to Ordinary Differential Equations)
Modultyp	Aufbaumodul Bachelor aus RM1 oder AM1 (ab 3. Fachsemester)
Fachgebiet	Analysis
Modulverantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Verständnis für die Fragen der Existenz und Eindeutigkeit von Lösungen
	Beherrschung elementarer Verfahren zur expliziten Bestimmung von Lösungen
	 Beherrschung elementarer Verfahren zur Untersuchung des qualitativen Lösungsverhaltens
	 Verständnis des Anwendungshintergrunds gewöhnlicher Differentialgleichungen, Modellierung mit Differentialgleichungen
	 Fähigkeit, eigene mathematische Überlegungen schriftlich und mündlich angemessen darzustellen
Inhalt	Begriff der Lösung eines Anfangswertproblems, Begriff des Phasenportraits
	 elementar lösbare Beispiele von Differentialgleichungen, insbesondere Trennung der Variablen, Variation der Konstanten
	 Grundlagen der Existenztheorie, insbesondere der Satz von Picard-Lindelöf, Charakterisierung maximaler Lösungen
	 Struktur und Berechnung des Lösungsraums linearer Differentialgleichungssysteme mit konstanten Koeffizienten
	qualitatives Lösungsverhalten, insbesondere Grundlagen der Stabilitätstheorie
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Module Analysis und Lineare Algebra
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur;
Vorwondharkoit	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen Weblieflichtmodul R. RM1, R. M. oder R. M. für den Rechelerstudiengang Methemetik
Verwendbarkeit	Wahlpflichtmodul B-RM1, B-AM1, B-M oder B-MP für den Bachelorstudiengang Mathematik Pflichtmodul für den Bachelorstudiengang Technomathematik
	Wahlpflichtmodul für den Bachelorstudiengang Wirtschaftsmathematik
	Voraussetzung für viele weiterführende Module insbesondere aus der Angewandten Mathematik
Angebotsturnus	jährlich im Wintersemester

AM1: Angewandte Mathematik 1

Modulname	Einführung in die Numerische Mathematik (Introduction to Numerical Mathematics)
Modultyp	Aufbaumodul Bachelor aus AM 1 (ab 3. Fachsemester)
Fachgebiet	Numerische Mathematik
Modulverantwortliche	Math. V (Numerische Mathematik)
Lernziele	Verständnis der Konzepte der Kondition numerischer Probleme und der Stabilität numerischer Algorithmen
	Fähigkeit zur Analyse der Konvergenz und des Rechenaufwandes numerischer Algorithmen
	 Fähigkeit zur Wahl eines geeigneten Algorithmus für ein gegebenes Problem aus den behandelten Problemklassen
	 Fähigkeit zur Implementierung numerischer Algorithmen in einer h\u00f6heren Programmiersprache
Inhalt	Numerische Fehleranalyse, Kondition und Stabilität
	Einführung in Algorithmen für
	 Lineare Gleichungssysteme
	Eigenwertprobleme
	Interpolation
	Quadratur
	Nichtlineare Gleichungen und Gleichungssysteme
	Anwendungsbeispiele für diese Algorithmen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Module Analysis und Lineare Algebra
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-AM1, B-M oder B-MP für den Bachelorstudiengang Mathematik
verwendbarkeit	Pflichtmodul BP1 für den Bachelorstudiengang Wirtschaftsmathematik
	Pflichtmodul BP1 für den Bachelorstudiengang Technomathematik
	Voraussetzung für alle Vertiefungsmodule in Numerischer Mathematik
Angebotsturnus	jährlich im Wintersemester
5	1.

AM1: Angewandte Mathematik 1

Modulname	Einführung in die Stochastik (Introduction to Stochastics)
Modultyp	Aufbaumodul Bachelor aus AM1 (ab 3. Fachsemester)
Fachgebiet	Stochastik
Modulverantwortliche	Stochastik
Lernziele	Verständnis für das Wirken des Zufalls
	Aneignung stochastischer Modellbildung
	Fähigkeit zur Auswertung von Wahrscheinlichkeiten
	Fähigkeit zur Interpretation von Wahrscheinlichkeitsaussagen
	Verständnis des Gesetzes der Großen Zahlen und des Zentralen Grenzwertsatzes
	Souveräner Umgang mit den mathematischen Begriffen und Beherrschung der Beweistechniken
Inhalt	Historische Beispiele
	 Stochastische Grundbegriffe: Wahrscheinlichkeitsraum, Zufallsvariable, Verteilung, stochastische Unabhängigkeit
	Erwartungswert (allgemeines Integral)
	\bullet Grenzwertsätze: $0/1$ -Gesetze, Gesetze der Großen Zahlen, Zentraler Grenzwertsatz (Lindeberg-Feller)
	 Anwendungen: empirische Verteilungsfunktion (Glivenko-Cantelli) und der Grenzwertsätze
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene Vorkenntnisse	Module Analysis, Lineare Algebra
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-AM1, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Pflichtmodul BP5 für den Bachelorstudiengang Technomathematik
	Pflichtmodul BP2 für den Bachelorstudiengang Wirtschaftsmathematik
	Voraussetzung für alle Vertiefungsmodule in
	Stochastik, Statistik, Wahrscheinlichkeitstheorie
Angebotsturnus	jährlich im Wintersemester

RM2: Reine Mathematik 2

Modulname	Einführung in die Algebra (Algebra)
Modultyp	Aufbaumodul
Fachgebiet	Algebra
Modulverantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie), Math. II (Computeralgebra)
Lernziele	Verständnis der grundlegenden Konzepte der Algebra
	Beherrschung der wichtigsten Techniken der Ring- und Körpertheorie
	Verständnis der grundlegenden Resultate der Algebra und deren Beweismethoden
Inhalt	Einführung in die Gruppentheorie: Isomorphiesätze, Sylowsätze, Auflösbarkeit
	Körpererweiterungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2) über 1 Semester
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Basismodul Lineare Algebra, Aufbaumodul Zahlentheorie und Algebraische Strukturen
Vorkenntnisse	
Leistungsnachweise	Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-RM2, B-M oder B-MP für den Bachelorstudiengang Mathematik
Angebotsturnus	jährlich im Sommersemester

RM2: Reine Mathematik 2

Modulname	Einführung in die Geometrie: Differentialgeometrie und Topologie (Differential Geometry and Topology)
Modultyp	Aufbaumodul Bachelor RM2
Fachgebiet	Geometrie
Modulverantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis der grundlegenden Konzepte der Differentialgeometrie von Kurven und Flächen
	Behrrschung der Techniken zur Berechnung von Fundamentalformen und Krümmungen
	Verständnis der grundlegenden Konzepte der mengentheoretischen Topologie
Inhalt	Ebene Kurven
	Kurven im Raum : Krümmungen, isometrische Klassifikation
	Flächen im Raum: I und II Fundamental-Form, Krümmungen, Theorema Egregium, spezielle Flächen
	Grundbegriffe der mengentheoretischen Topologie
	Begriff der Fundamentalgruppe
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2) über 1 Semester
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Basismodule Analysis, Lineare Algebra
Vorkenntnisse	
Leistungsnachweise	Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-RM2, B-M oder B-MP für den Bachelorstudiengang Mathematik
Angebotsturnus	jährlich im Sommersemester

RM2: Reine Mathematik 2

AM2: Angewandte Mathematik 2

	T
Modulname	Einführung in die Computeralgebra (Introduction to Computer Algebra)
Modultyp	Aufbaumodul
Fachgebiet	Algebra
Modulverantwortliche	Math. II (Computeralgebra)
Lernziele	Fig. 11. P. N. P. P. P. D. I.
	Einsicht in die Notwendigkeit exakten Rechnens.
	Verständnis von grundlegenden Methoden der Computeralgebra und deren Effizienz.
	Kompetenz in der Anwendung von Computeralgebrasystemen.
Inhalt	Euklidischer Algorithmus
	Diskrete Fouriertransformation
	Schnelle Multiplikation von Polynomen
	Modulare Arithmetik
	Faktorisieren von Polynomen über endlichen Körpern
	·
	Primzahltests, Faktorisierung von ganzen Zahlen
	Resultanten und modulare ggT-Berechnung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2) über 1 Semester
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Basismodul Lineare Algebra,
Vorkenntnisse	Aufbaumodul Einführung in die Zahlentheorie und Algebraische Strukturen
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-RM2, B-AM2, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Wirtschaftsmathematik BW2c (nach BW1a)
Angebotsturnus	jährlich im Sommersemester

Modulname	Einführung in die Optimierung (Introduction to Optimization)
Modultyp	Aufbaumodul Bachelor aus AM 2 (ab 3. Fachsemester)
Fachgebiet	Optimierung
Modulverantwortliche	Math. V (Numerische Mathematik), Wirtschaftsmathematik
Lernziele	 Verständnis und Beherrschung der Optimalitäts-, Dualitäts- und Sensitivitätstheorie der Linearen Optimierung
	Verständnis und Beherrschung von Grundlagen der Polyedertheorie
	 Verständnis und Berherrschung der wichtigsten numerischen Lösungsverfahren für die Lineare Optimierung
	Fähigkeit zu deren Computerimplementierung in einer höheren Programmiersprache
	 Fähigkeit zur Identifikation, Modellierung und Lösung von praktischen Problemstellungen der Linearen Optimierung
	 Fähigkeit, Standard-Software zur Modellierung und Lösung linearer Optimierungsaufgaben zu benutzen
Inhalt	Beispiele für Lineare Optimierungsaufgaben
	Einordnung und Abgrenzung
	Prinzip des Simplex-Algorithmus und Beispiele
	Einführung in die Polyedertheorie
	Optimalitäts-, Dualitäts- und Sensitivitätstheorie der Linearen Optimierung
	Das Simplex-Verfahren im Detail (Standard-, revidiert, Netzwerk)
	Polynomiale Komplexität und Innere-Punkte-Verfahren (Bericht)
	Überblick zu allgemeineren Optimierungsaufgaben (Quadratisch, allgemeine Nichtlineare Optimierung, Diskrete Optimierung)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
Ft.LL.	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene Vorkenntnisse	Module Analysis und Lineare Algebra
Leistungsnachweise	mündliche Prüfung oder Klausur;
Loistangonaonwoise	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-AM2, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Pflichtmodul BP3 für den Bachelorstudiengang Technomathematik
	Pflichtmodul BP3 für den Bachelorstudiengang Wirtschaftsmathematik
	Voraussetzung für alle Vertiefungsmodule Optimierung
Angebotsturnus	jährlich im Sommersemester

	E. (III
Modulname	Einführung in die Partiellen Differentialgleichungen
	(Introduction to Partial Differential Equations)
Modultyp	Aufbaumodul Bachelor aus AM2 (ab 4. Fachsemester)
Fachgebiet	Analysis
Modulverantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	 Kenntnis und Verständis der wesentlichen Grundtypen partieller Differentialgleichungen und ihres unterschiedlichen Lösungsverhaltens
	Beherrschung einiger elementarer Lösungsmethoden
	Verständnis des Anwendungshintergrunds partieller Differentialgleichungen, Modellierung
Inhalt	Existenz- und Eindeutigkeitsaussagen sowie Lösungsverhalten für die wesentlichen Grundtypen partieller Differentialgleichungen, insbesondere
	Poissongleichung
	Wärmeleitungsgleichung
	Wellengleichung
	 partielle Differentialgleichungen erster Ordnung, insbesondere skalare Erhaltungsgleichungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Module Analysis, Lineare Algebra, Vektoranalysis
Vorkenntnisse	Einführung in die Gewöhnlichen Differentialgleichungen
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-AM2, B-M oder B-MP für den Bachelorstudiengang Mathematik
	Pflichtmodul BP4 für den Bachelorstudiengang Technomathematik
	Wahlpflichtmodul BW2 für den Bachelorstudiengang Wirtschaftsmathematik
	Voraussetzung für alle Vertiefungsmodule in
	Angewandter Analysis / Partiellen Differentialgleichungen
Angebotsturnus	jährlich im Sommersemester

AM2: Angewandte Mathematik 2

Modulname	Einführung in die Statistik (Introduction to Statistics)
Modultyp	Aufbaumodul Bachelor aus AM2 (ab 4. Fachsemester)
Fachgebiet	Stochastik
Modulverantwortliche	Stochastik
Lernziele	Aneignung statistischer Modellbildung
	Beherrschung der statistischen Schlußweise
	Fähigkeit zur Formulierung statistischer Hypothesen
	Fähigkeit zur Herleitung statistischer Verfahren nach Gütekriterien
	Souveräne Anwendung der Verteilungstheorie und der Grenzwertsätze
	Umgang mit statistischer Software
Inhalt	 prototypische statistische Probleme: Testen einfacher Hypothesen, Neyman-Pearson-Lemma, Intervallschätzung (Lokationsparameter), erwartungstreue Schätzung (Cramer-Rao Schranke)
	Maximum Likelihood oder M-Schätzung (asymptotische Verteilungstheorie)
	Kleinste-Quadrate-Methode (Gauß-Markov)
	Bedingter Erwartungswert, Suffizienz und Vollständigkeit
	Schätztheorie (Rao-Blackwell, Lehmann-Scheffe)
	Testtheorie (monotone Dichtequotienten, Exponentialfamilien)
	Rechnergestützte Auswertung statistischer Verfahren
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (3) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 3 h Vorlesung plus 2 h Nachbereitung = 75 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Module Analysis, Lineare Algebra, Einführung in die Stochastik
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul B-AM2, B-M oder B-MP für den Bachelorstudiengang Mathematik Wahlpflichtmodul BW1 für den Bachelorstudiengang Technomathematik Pflichtmodul BP4 für den Bachelorstudiengang Wirtschaftsmathematik Voraussetzung für alle Vertiefungsmodule in Stochastik und Statistik
Angebotsturnus	jährlich im Sommersemester

Wirtschaftsmathematik

Modulname	Graphen- und Netzwerk-Algorithmen (Graph and Network Algorithms)
Modultyp	Aufbaumodul Bachelor Wirtschaftsmathematik
Forschungsgebiet	Diskrete Optimierung
Modulverantwortliche	Studiengangsmoderator Wirtschaftsmathematik
Lernziele	Kenntnis der Modellierung von diskreten Problemen durch Graphen
	 Kenntnis der grundlegenden Ansätze mit graphentheoretischen Algorithmen optimale Lösungen zu finden
	 Praktische F\u00e4higkeiten der Umsetzung algorithmischer L\u00f6sungen in einsetzbare Computerprogramme
Inhalt	Das Modul besteht aus
	I. einer Veranstaltung zur Theorie von Graphen- und Netzwerk-Algorithmen im Umfang von 5LP, momentan z.B. "Algorithmen und Datenstrukturen II" (INF 206)
	II. einer Veranstaltung zur Implementierung von Algorithmen in einer höheren Programmiersprache oder einem Computer-Algebrasystem im Umfang von 3LP, momentan alternativ
	"Mathematik am Computer" (A6) oder
	- "Programmieren in C++"
Dauer	1 bis 2 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1) plus Computeralgebra- bzw. Programmierkurs
LP	8
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	1 h Übung plus 2 h Vor- und Nachbereitung = 45 h;
	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien;
	Gesamt (2 Semester): 240 h.
Empfohlene	Modul "Algorithmen und Datenstrukturen", höhere Programmiersprache
Vorkenntnisse	
Leistungsnachweise	Prüfung in I. gemäß der dortigen Regeln, 50% der Übungsaufgabenpunkte in II.;
	die in I. erzielte Note bestimmt die gesamte Modulnote
Verwendbarkeit	Wahlpflichtmodul BW2 für den Bachelor-Studiengang Wirtschaftsmathematik
Angebotsturnus	jährlich

B. Aufbaumodule Praktikum

Modulname	Praktikum
	(Practical Training)
Modultyp	Alternatives Wahlpflichtmodul/Aufbaumodul, Bachelor Mathematik (5. Fachsemester)
Fachgebiet	Jedes Gebiet der Angewandten Mathematik oder der Reinen Mathematik mit
3	Anwendungsbezügen
Modulverantwortliche	Ingenieurmathematik, Math. VIII (Algebraische Geometrie)
Lernziele	Sammlung von Erfahrungen in einem nicht-universitären Umfeld oder in einer
	universitären Arbeitsgruppe, Mitarbeit in Forschungsprojekten.
	Anwendungsorientierte Umsetzung bisher erlernter mathematischer und/oder
	informatischer Kenntnisse.
	Abfassung eines kurzen Berichtes.
Erläuterung	Folgende alternative Möglichkeiten können gewählt werden:
	 Wenn das Praktikum in einem Industrie- oder Dienstleistungsunternehmen stattfindet, sollte es eine studiennahe Tätigkeit beinhalten.
	 Wenn das Praktikum in einer universitären Arbeitsgruppe stattfindet, muss es Einblicke in die anwendungsorientierte Umsetzung mathematischer und/oder informatischer Methoden liefern.
	Die Praktikumstätigkeit wird von einem verantwortlichen Betreuer testiert (Praktikumszeugnis).
	 In beiden Fällen ist ein kurzer Bericht zu schreiben, der das Erreichen der Lernziele darstellt.
Dauer	1 Semester (vorzugsweise vorlesungsfreie Zeit)
Sprache	nach Absprache
Lehrformen	Praktikum
LP	8
Arbeitsaufwand	240 h, inklusive Abfassung des Berichts.
Empfohlene	Module Analysis, Lineare Algebra, Basismodule aus dem Anwendungsfach sowie mindestens
Vorkenntnisse	zwei weiterführende Vorlesungen
Leistungsnachweise	Testat (Praktikumszeugnis) und schriftlicher Bericht
Verwendbarkeit	Wahlpflichtmodul B-MP für den Bachelorstudiengang Mathematik
	Wahlpflichtmodul G für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	jedes Semester nach Bedarf

C. Vertiefungsmodule

Erste vertiefte Kenntnisse in Mathematik

Modulname	Erste vertiefte Kenntnisse in Mathematik (First higher skills in Mathematics)
Modultyp	Vertiefungsmodul Bachelor
Forschungsgebiet	Alle Forschungsgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	Die erfolgreichen Studierenden kennen die für die Forschung typischen mathematischen Techniken der Begriffsbildung, der Theorieentwicklung, der Beweisführung und der Anwendung in einem ersten Bereich eines Forschungsgebiets. Bachelorstudierende haben einen ersten Einblick in wissenschaftlich aktive Disziplinen. Bemerkung: Das Veranstaltungsangebot für dieses Wahlpflichtmodul weitgehend identisch mit dem Veranstaltungsprogramm für Vertiefungsmodul A1 aus dem Master-Programm; damit wird den Bachelor-Studierenden ein Einblick in das Master-Studium zugänglich gemacht. Im Unterschied zum Mastermodul A1 wird die Fähigkeit, Beziehungen zu bereits studierten Vertiefungen herzustellen, noch nicht verlangt. Auch ist die Anforderung an die Fähigkeit zum selbständigen Umgang mit dem Erlernten in Mastermodul A1 höher. Die Konsultation der Studienberatung bei der Auswahl einer Vertiefungsvorlesung wird empfohlen.
Inhalt	Eine Vertiefungsvorlesung mit Übung aus einem Forschungsgebiet.
	Im Bachelor muss ein Exemplar dieses Moduls eingebracht werden. Beispiele für Vertiefungsvorlesungen mit der Zuordnung zu ihren Forschungsgebieten finden sich Master-Teil des Modulhandbuchs ab Seite 48.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min) oder Klausur Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul C1 für alle Bachelorstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Bachelor-Hauptseminar

Modulname	Bachelor-Hauptseminar in Mathematik (Seminar in Mathematics)
Modultyp	Seminar Bachelor (ab 5. Fachsemester)
Fachgebiet	alle Fachgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	 Vorbereitung: Fähigkeit zur eigenständigen wissenschaftlichen Einarbeitung in ein wissenschaftliches Spezialthema, z. B. durch Literaturrecherche in deutsch- und englischsprachiger Literatur Beherrschung grundlegender Techniken der Arbeitsorganisation und -dokumentation Sicherheit in der Auswahl angemessener Präsentationstechniken (Tafel, Folie, Beamer, Animation etc.)
	 Vortrag: Fähigkeit zur freien Rede und anschaulicher Darstellung Beherrschung der gewählten Präsentationstechniken Sicherheit beim Eingehen auf Zuhörerfragen
	 Diskussion: Fähigkeit zur Formulierung angemessener fachlicher Fragen Sicherheit im Umgang mit fachlichen Fragen Bereitschaft und Fähigkeit zur konstruktiven Kritik an einem Vortrag Fähigkeit, konstruktive Kritik an Vorträgen zu verwerten
	 Ausarbeitung: Fähigkeit, ein Thema kurz, prägnant und einprägsam schriftlich darzustellen Effizienter Umgang mit wissenschaftlichen Textsatzsystemen (z. B. LATEX)
Inhalt	Studierende erhalten ein fachliches Thema oder eine Projektaufgabe zur eigenständigen Einarbeitung nach Literaturempfehlung (i. d. R. deutsche und/oder englische Literatur)
	 Zu jedem Thema wird eine Präsentation von 45–75 Minuten Dauer vorbereitet und im Plenum vorgeführt
	Über die Präsentationsinhalte und über die Präsentation selbst wird im Plenum diskutiert
	• Eine Ausarbeitung (5–10 Seiten) wird zu jeder Präsentation mit einem wissenschaftlichen Textsatzsystem (z. B. Latex) angefertigt und im Plenum verteilt
Dauer	1 Semester oder Blockveranstaltung
Sprache	deutsch, englische Vorträge möglich
Lehrformen	Hauptseminar (2)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Seminar = 30 h; Inhaltliche und präsentationstechnische Vorbereitung des Vortrags 90 h; Gesamt: 120 h.
Empfohlene Vorkenntnisse	Basismodule; Aufbau- und Vertiefungsmodule nach gesonderter Ankündigung
Leistungsnachweise	Vortrag, Diskussion, Ausarbeitung (unbenotet)
Verwendbarkeit	Vertiefungsmodul C2 für alle Bachelor-Studiengänge Voraussetzung für die Bachelorarbeit
Angohototurous	jedes Semester mindestens ein Seminar
Angebotsturnus	Jedes Semester mindestens em Semina

C. Vertiefungsmodule

Praktikumsseminar

Modulname	Praktikumsseminar (Practical Training and Seminar)
Modultyp	Pflichtmodul, Bachelor Technomathematik (5. Fachsemester)
Forschungsgebiet	Jedes Gebiet der Angewandten Mathematik
Modulverantwortliche	Math. V (Numerische Mathematik), Ingenieurmathematik
Lernziele	 Sammlung von Erfahrungen in einem nicht-universitären Umfeld oder in einer universitären Arbeitsgruppe mit Bezug zu den Kombinationsfächern im Bachelorstudiengang Technomathematik, Mitarbeit in Forschungsprojekten. Anwendungsorientierte Umsetzung bisher erlernter mathematischer und/oder informatischer Kenntnisse insbesondere bei ingenieurwissenschaftlichen Problemstellungen. Seminarvortrag über verwendete Methoden und erzielte Ergebnisse. Abfassung eines kurzen Berichtes.
Erläuterung	 Folgende alternative Möglichkeiten können gewählt werden: Wenn das Praktikum in einem Industrie- oder Dienstleistungsunternehmen stattfindet, sollte es eine studiennahe Tätigkeit beinhalten. Wenn das Praktikum in einer universitären Arbeitsgruppe stattfindet, muss es Einblicke in die anwendungsorientierte Umsetzung mathematischer und/oder informatischer Methoden liefern, vorzugsweise bei ingenieurwissenschaftlichen Problemstellungen. Die Praktikumstätigkeit wird von einem verantwortlichen Betreuer testiert (Praktikumszeugnis). In beiden Fällen ist ein Seminarvortrag zu halten sowie ein kurzer Bericht zu schreiben, in denen die verwendeten Methoden und die erzielten Ergebnisse dargestellt werden.
Dauer	6 Wochen (das Praktikum kann während der vorlesungsfreien Zeit durchgeführt werden)
Sprache	nach Absprache
Lehrformen	Praktikum
LP	8
Arbeitsaufwand	240 h. inkl. Vorbereitung des Seminarvortrages und Abfassung des Berichtes
Empfohlene	Basis- und Aufbaumodule bis zum 4. Semester
Vorkenntnisse	
Leistungsnachweise	Seminarvortrag und schriftlicher Bericht
Verwendbarkeit	Pflichtmodul C2 für den Bachelorstudiengang Technomathematik
Angebotsturnus	jedes Semester nach Bedarf

D. Bachelorarbeit

Kolloquium zur Bachelorarbeit

Modulname	Kolloquium zur Bachelorarbeit
Modultyp	(Colloquium on Bachelor Theses) Seminar Bachelor (ab 5. Fachsemester)
Forschungsgebiet	alle Fachgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	 Fähigkeit zur didaktischen Aufbereitung der eigenen wissenschaftlichen Arbeit (umfangreicher als ein Seminarthema) für eine zeitlich begrenzte Präsentation (Motivation, Themenauswwahl, Schwerpunktsetzung, Kurzfassung, Veranschaulichung etc.)
	Fähigkeit zum kurzen und prägnanten Bericht über die eigene wissenschafltiche Arbeit
	Fähigkeit zur überzeugenden Verteidigung der eigenen wissenschafltichen Aktivitäten
	Fähigkeit zur kritischen Hinterfragung fremder wissenschaftlicher Aktivitäten
Inhalt	Studierende bereiten das Thema und die (bisherigen) Ergebnisse ihrer Bachelorarbeit für eine Präsentation auf
	 Zu jeder Bachelorarbeit wird eine Präsentation von 20–30 Minuten Dauer vorbereitet und im Plenum vorgeführt
	 Über die Präsentationsinhalte inklusive Kontext zu einer vorher festgelegten, verwandten Lehrveranstaltung wird im Plenum etwa 10 Minuten diskutiert
Dauer	1 Semester oder Blockveranstaltung
Sprache	deutsch, englische Vorträge möglich
Lehrformen	Hauptseminar (2)
LP	3
Arbeitsaufwand	Wöchentlich Seminar 2 h = 30 h oder Blockseminar mit vorheriger Vortragsprobe = 30 h
	Vorbereitung der Präsentation = 60 h, Gesamt: 90 h.
Empfohlene	Basismodule; Aufbau- und Vertiefungsmodule nach gesonderter Ankündigung, Seminar in
Vorkenntnisse	Mathmatik, Bachelorarbeit begonnen oder abgeschlossen
Leistungsnachweise	Vortrag, Diskussion
Verwendbarkeit	Pflichtmodul D2 für die Bachelorstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik
Angebotsturnus	jedes Semester

E. Anwendungsfächer

E0. Multimediakompetenz

Modulname	Multimediakompetenz (Multimedia Skills)
Modultyp	Anwendungsfachmodul
Fachgebiet	Fachübergreifend
Modulverantwortliche	LS Mathematik und ihre Didaktik
Lernziele	Grundlegende Kompetenzen im Umgang mit dem Internet
Inhalt	Internet als Lehr- und Lernmedium
	technische Grundlagen des Internet
	Internet-Dienste, Dateien im Internet, Suchmaschinen, Datei-Formate
	Erstellung von Web-Seiten
	Einführung in Bildbearbeitung und Multimedia-Formate
	Datensicherheit, rechtliche Aspekte
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (2)
LP	4
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	2 h Übung plus 2 h Vor- und Nachbereitung = 60 h;
	15 h Prüfungsvorbereitung;
	Gesamt: 120 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Fachübergreifendes Wahlpflichtmodul im Anwendungsfachbereich E für den
	Bachelorstudiengang Mathematik
Angebotsturnus	jährlich

E. Anwendungsfächer

E0. Multimediakompetenz

Modulname	Objektorientiertes Programmieren
	(Object-Oriented Programming)
Modultyp	Anwendungsfachmodul
Fachgebiet	Fachübergreifend
Modulverantwortliche	LS Mathematik V (Numerische Mathematik)
Lernziele	Fähigkeit zum Entwurf und zur performanten Implementierung von Klassen
	 Fähigkeit zum Einsatz von Ableitungen und abstrakten Klassen zur effizienten Realisierung von Vererbungshierarchien
	Verständnis der Möglichkeiten einer objektorientierten Programmiersprache
	Fähigkeit, parameterabhängige (Template-)Funktionen und Klassen einzusetzen
Inhalt	Gemeinsamkeiten und Unterschiede von Strukturen und Klassen
	Definition von Klassen (Datenelemente und Methoden, Konstruktoren und Destruktoren)
	Einsatz objektunabhängiger Datenelemente und Methoden
	Verwendung vordefinierter Klassen
	Zugriffsschutz (private, public, friend-Mechanismus) für Datenelemente und Methoden
	Vererbung/Ableitung von Klassen
	Überladen und Überschreiben von Operatoren und Methoden
	 abstrakte Klassen und virtuelle Methoden, Polymorphie/late binding, Schnittstellen/Interfaces
	Templatefunktionen und -klassen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (2)
LP	4
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h;
	2 h Übung plus 3 h Vor- und Nachbereitung = 75 h;
	Gesamt: 120 h.
Empfohlene	Modul A5 "Programmierkurs"
Vorkenntnisse	outslandish a Taile shows and don Ollows are
Leistungsnachweise	erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Fachübergreifendes Wahlpflichtmodul im Anwendungsfachbereich E für den Bachelorstudiengang Mathematik
Angebotsturnus	jährlich

E. Anwendungsfächer

E1. Physik

Alle Module der Bachelor-Studiengänge Physik mit Ausnahme der Mathematikmodule für Physiker können zur Abdeckung der Modulbereichs Anwendungsfach "Physik" im Bachelor- und Master-Studiengang Mathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

Die Konsultation der Studienberatung wird empfohlen.

E2. Informatik

Modulname	Informatik für Mathematiker (wahlweise: INF 107: Konzepte der Programmierung oder INF 108: Rechnerarchitektur und Rechnernetze)
Modultyp	Bachelor (ab 1. Fachsemester)
Fachgebiet	Informatik
Verantwortlich	Professuren Angewandte Informatik I, Angewandte Informatik II
Lernziele	Siehe Modulhandbuch Informatik: 5/8 des Stoffs aus
	INF 107: Konzepte der Programmierung oder
	INF 108: Rechnerarchitektur und Rechnernetze
Inhalt	Siehe Modulhandbuch Informatik:
	5/8 des Stoffs aus
	INE 407 1/4 1 1 D
	INF 107: Konzepte der Programmierung oder
	INF 108: Rechnerarchitektur und Rechnernetze
Dauer	1 Semester
Sprache	deutsch
Lehrformen	5/8 von Vorlesung (4) mit Übungen (2) (bis Weihnachten)
ECTS-Punkte	5
Arbeitsaufwand	Wöchentlich im Schnitt 2h Vorlesung plus 2h Nachbereitung = 60h;
	2 h Übung plus 2 h Vor- und Nachbereitung = 60 h;
	15 h Prüfungsvorbereitung, 15 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Siehe Modulhandbuch Informatik:
	Anforderungen gemäß INF 107 bzw. INF 108
Verwendbarkeit	Pflichtmodul E1 für den Bachelorstudiengang Technomathematik
	Pflichtmodul E1 für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	jährlich im Wintersemester

	Alexanithment and Datameter letures
Modulname	Algorithmen und Datenstrukturen
Modultyp	Anwendungsfachmodul
Fachgebiet	Informatik
Modulverantwortliche	Prof. Dr. Christian Knauer
Lernziele	Verständnis statischer und dynamischer Datenstrukturen
	Kenntnis von Algorithmen für das Sortieren, Suchen, Durchlaufen von Daten
	Beherrschung komplexerer Datenstrukturen wie Bäume, Graphen oder Mengen
	Grundkenntnisse der Algorithmentheorie
Inhalt	Siehe Modulhandbuch Informatik:
	Eine Veranstaltung der Informatik zu Algorithmen und Datenstrukturen im Umfang von 8LP,
	momentan z. B.
	"Algorithmen und Datenstrukturen I" (INF 109)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 2 h Nachbereitung = 90 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	30 h Prüfungsvorbereitung, 15 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	keine
Vorkenntnisse	
Leistungsnachweise	Siehe Modulhandbuch Informatik:
	Anforderungen gemäß INF 109
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik
	Pflichtmodul E2 für den Bachelorstudiengang Technomathematik
	Pflichtmodul E2 für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	jährlich

Modulname	Software-Praktikum
Woddinamo	(Practical Training in Software Development)
Modultyp	Anwendungsfachmodul
	Informatik
Fachgebiet	
Modulverantwortliche	Alle Professoren der Angewandten Informatik
Lernziele	 Fähigkeit, kleine bis mittelgroße Softwaresysteme in eigenständiger Weise zu konzipieren und umzusetzen
Inhalt	Siehe Modulhandbuch Informatik:
	Eine Veranstaltung der Informatik zur praktischen, eigenständigen Produktion von Software
	momentan z. B.
	"Bachelor-Praktikum" (INF 105)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Praktikum (4)
LP	6
Arbeitsaufwand	Wöchentlich 4 h Praktikum plus 4 h Vorbereitung = 120 h;
	60 h Aufbereitung und Vorbereitung des Praktikumsinhalts, Gesamt: 180 h.
Empfohlene	Modul "Algorithmen und Datenstrukturen", höhere Programmiersprache
Vorkenntnisse	
Leistungsnachweise	Siehe Modulhandbuch Informatik:
	Anforderungen gemäß INF 105
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik
	Pflichtmodul E3 für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	etwa jährlich

E2. Informatik

Modulname	Datenbanken
	(Entwurfstheorie und Funktionsweise relationaler Datenbanken)
Modultyp	Anwendungsfachmodul
Fachgebiet	Informatik
Modulverantwortliche	Prof. Dr. Stefan Jablonski
Lernziele	Grundlegende Kenntnisse über die Architektur relationaler Datenbanken
	Verständnis der Entwurfstheorie relationaler Datenbanken
	Erlernen der Zugriffssprache SQL
Inhalt	Siehe Modulhandbuch Informatik:
	Eine Veranstaltung der Informatik zu Datenbanken im Umfang von 8LP, momentan z. B.
	"Datenbanken und Informationssysteme I" (INF 114)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	8
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 2 h Nachbereitung = 90 h;
	2 h Übung plus 5 h Vor- und Nachbereitung = 105 h;
	30 h Prüfungsvorbereitung, 15 h Vor-/Nachbereiten in Semesterferien, Gesamt: 240 h.
Empfohlene	Modul "Algorithmen und Datenstrukturen", höhere Programmiersprache
Vorkenntnisse	
Leistungsnachweise	Siehe Modulhandbuch Informatik:
	Anforderungen gemäß INF 114
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik
	Pflichtmodul E4 für den Bachelorstudiengang Wirtschaftsmathematik
Angebotsturnus	etwa jährlich

E2. Informatik

(Bereich E. im Bachelorstudiengang Techno- und Wirtschaftsmathematik)

Ferner können alle weiteren Module der Bachelor- und Master-Studiengänge der Informatik mit Ausnahme der Mathematikmodule für Informatiker zur Abdeckung der Modulbereichs Anwendungsfach "Informatik" in den Bachelor- und Master-Studiengängen Mathematik, Technomathematik und Wirtschaftsmathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

E3. Wirtschaftswissenschaften

(Bereich F. im Bachelorstudiengang Wirtschaftsmathematik)

Alle Module der Bachelor-Studiengänge Economics und Betriebswirtschaftslehre mit Ausnahme der Mathematikmodule für Wirtschaftswissenschaftler können zur Abdeckung des Modulbereichs Anwendungsfach "Wirtschaftswissenschaften" in den Bachelorund Master-Studiengängen Mathematik und Wirtschaftsmathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

E4. Philosophy & Economics

Alle Module der Bachelor-Studiengänge Philosophy & Economics mit Ausnahme der Mathematikmodule für Wirtschaftswissenschaftler können zur Abdeckung der Modulbereichs Anwendungsfach "Philosophy & Economics" benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

E5. Ingenieurwissenschaften

(Bereich F. im Bachelorstudiengang Technomathematik.)

Modulname	Technische Mechanik (Applied Mechanics)
Modultyp	Anwendungsfachmodul
Fachgebiet	Technische Mechanik
Modulverantwortliche	Technische Mechanik und Strömungsmechanik
Lernziele	
Lemziele	 Verständnis der Konzepte der Technischen Mechanik Fähigkeit zur Umsetzung mechanischer Probleme in mathematische Modelle Denken in Systemen Lösung einfacher Rand- und Eigenwertaufgaben bei gewöhnlichen Differentialgleichungen
Inhalt	 Kraftbegriff, Komponentenzerlegung einer Kraft, vektorielle Addition von Kräften, Skalarprodukt skalares und vektorielles Moment Gleichgewichtsaxiome, Lagerreaktionen statische und kinematische Bestimmtheit eines Systems Flächenmomente 1. Ordnung (Massen-, Flächen- Linienschwerpunkt) Schnittreaktionen an einfachen und zusammengesetzten ebenen und räumlichen Tragwerken Superpositionsprinzip Reibung Grundlagen der Kontinuumsmechanik: Spannungsbegriff, Spannungsvektor, Spannungstensor, Spannungszustände, Hauptachsentransformation für Spannungen Deformationsbegriff, Greenscher Verzerrungstensor, ein- und mehrachsige Deformation, Hauptachsentransformation für Deformationen mechanische Materialtheorie: allgemeines Hookesches Gesetz mit Wärmedehnung, Elastizitäts- und Schubmodul, Poisson-Zahl Vergleichsspannungshypothesen Balkentheorie, Flächenmomente 2. Ordnung, Satz von Steiner, Querkraftschub Biegelinie von einfachen und zusammengesetzten ebenen und räumlichen Tragwerken, schiefe Biegung statisch bestimmte und unbestimmte Systeme Superpositionsprinzip Knickung schlanker Stäbe, Torsion zylindrischer Stäbe
D	
Dauer	2 Semester
Sprache Lehrformen	deutsch Wintersemester: Teil 1 des Moduls: Vorlesung (3) mit Übungen (2); Sommersemester: Teil 2 des Moduls: Vorlesung (2) mit Übungen (2).
LP	Teil 1: 5; Teil 2: 4.
Arbeitsaufwand	Teil 1: Wöchentlich 3 h Vorlesung plus 1 h Nachbereitung = 60 h; 2 h Übung plus 2 h Vor- und Nachbereitung = 60 h; 30 h Prüfungsvorbereitung. Gesamt: 150 h. Teil 2: Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h; 2 h Übung plus 2 h Vor- und Nachbereitung = 60 h; 15 h Prüfungsvorbereitung. Gesamt: 120 h.
Empfohlene Vorkenntnisse	Solide Kenntnisse der elementaren Algebra und Vektorrechnung, der Trigonometrie, der Lösung linearer Gleichungssysteme und der Differential- und Integralrechnung einer Variablen aus der Schule oder aus den parallel zu hörenden Modulen Analysis und Lineare Algebra.
Leistungsnachweise	Klausur über die Inhalte beider Teile
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik Pflichtmodul FP1 für den Bachelorstudiengang Technomathematik; Voraussetzung für alle weiterführenden Vorlesungen auf dem Gebiet der Mechanik wie z. B. Strömungsmechanik. jährlich im Wintersemester
Angebotsturnus	Jannion in wintersemester

E5. Ingenieurwissenschaften

(Bereich F. im Bachelorstudiengang Technomathematik.)

Modulname	Elektrotechnik/Regelungstechnik (Electrical Engineering/Control Engineering)
Modultyp	Anwendungsfachmodul
Fachgebiet	Elektrotechnik/Regelungstechnik
Modulverantwortliche	Mess- und Regeltechnik
Lernziele	 Überblick über elektrische, magnetische und elektromagnetische Erscheinungen; Kenntnis der Terminologie und der Grundbegriffe der Elektrotechnik und der Regelungstechnik; Fähigkeit zur Beurteilung und quantitativen Behandlung einfacher elektro- und regelungstechnischer Probleme; Einübung zentraler Aspekte der Methodenkompetenz (Wissenslücken erkennen und schließen, Wissen auf neue Probleme anwenden, selbständiges Arbeiten, Problemlösungsfähigkeit, analytische Fähigkeiten).
Inhalt	 Elektrostatik: Coulombsches Gesetz, elektrische Feldstärke, Arbeit im Feld, Potential und Spannung, elektrische Flussdichte, Leiter, Isolatoren, Kondensator und Kapazität, Energi des elektrischen Feldes Stationäre Strömung: Stromstärke, Stromdichte, lokales Ohmsches Gesetz, Gesetz von Joule, Kirchhoffsche Sätze, Ohmscher Widerstand, integrale elektrische Leistung
	 Magnetostatik: magnetische Flussdichte, magnetische Feldstärke, Gesetz von Biot-Savart, magnetischer Dipol und und Dauermagnetismus, magnetische und nichtmagnetische Materialien, Spule und Induktivität, magnetischer Kreis, Energie des magnetischen Feldes
	Elektrodynamik: Induktion, vollständiges System der Maxwell-Gleichungen
	Gleichstromnetzwerke: Spannungs- und Stromquellen, Knotenpotentialanalyse,
	Ersatzquellen, Schaltvorgänge
	 Wechselstromnetzwerke: komplexe Wechselstromrechnung, Frequenzgang und Ortskurve, Leistung
	 Aufgabenstellung Steuerung und Regelung, Terminologie
	 Mathematische Beschreibung von Regelkreisgliedern: Statisches Verhalten,
	Differentialgleichung, Übergangs- und Gewichtsfunktion, Faltung,
	Betriebspunktlinearisierung, Laplace-Transformation, Übertragungsfunktion, Pole und
	Nullstellen, Frequenzgang, Bode-Diagramm, Ortskurve, Signalflussplan
	Typische lineare Übertragungsglieder: P, I, D, Tt, PDmTn
	 Lineare kontinuierliche Regelkreise: Führungs- und Störverhalten, stationäres Verhalten, Stabilität (Pollage, Nyquist, Hurwitz), PID-Regler, analoge und digitale Reglerrealisierung
	 Reglerparametrierung: Optimalitätskriterien, Kompensation großer Zeitkonstanten,
	Betragsoptimum, Symmetrisches Optimum, Ziegler-Nichols
Dauer	2 Semester
Sprache	deutsch
Lehrformen	Wintersemester: Teil 1 des Moduls: Vorlesung (2) mit Übungen (1);
LP	Sommersemester: Teil 2 des Moduls: Vorlesung (2) mit Übungen (1). Teil 1: 4; Teil 2: 4.
Arbeitsaufwand	je Teil: Wöchentlich 2h Vorlesung plus 1 h Nachbereitung = 45 h; 1 h Übung plus 2 h Vor- und
, a solidadi walla	Nachbereitung = 45 h; 30 h Prüfungsvorbereitung. Gesamt: 120 h.
Empfohlene	Mathematische Grundlagen der ersten beiden Semester
Vorkenntnisse	•
Leistungsnachweise	je Teil: Klausur; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik
	Pflichtmodul FP2 für den Bachelorstudiengang Technomathematik;
	Voraussetzung für Vorlesung Regelungstechnik und alle weiterführenden Vorlesungen auf dem Gebiet der Systemtheorie und Automatisierungstechnik wie z.B. Messtechnik, Sensorik und
Angebotsturnus	rechnergestütztes Messen, ausgewählte Kapitel der Mechatronik

E5. Ingenieurwissenschaften

(Bereich F. im Bachelorstudiengang Technomathematik.)

Modulname	Strömungsmechanik (Fluid Dynamics)
Modultyp	Anwendungsfachmodul
Fachgebiet	Strömungsmechanik
Modulverantwortliche	Technische Mechanik und Strömungsmechanik
Lernziele	 Verständnis der Konzepte der Strömungsmechanik Befähigung zur Berechnung von einfachen Umströmungs- und
	Durchströmungsproblemen
Inhalt	Definition und Eigenschaften von Flüssigkeiten
	Hydrostatik
	Kinematik von Strömungen
	Bilanzgleichungen für Masse und Impuls
	Materialgesetze
	Navier-Stokes-Gleichungen
	Einführung in die Dimensionsanalysis
	Eulersche Gleichung und deren Integrale: Bernoulli-Gleichung, Carnotscher Stoßverlust
	inkompressible Potentialströmung
	 exakte Lösung der Navier-Stokes-Gleichungen am Beispiel der stationären Schichtenströmung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (2)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h; 2 h Übung plus 2 h Vor- und Nachbereitung = 60 h; 15 h Prüfungsvorbereitung. Gesamt: 120 h.
Empfohlene	Basismodule Analysis, Lineare Algebra und Vektoranalysis sowie Aufbaumodule Einführung in
Vorkenntnisse	die Gewöhnlichen Differentialgleichungen und Einführung in die Partiellen Differentialgleichungen.
Leistungsnachweise	Klausur
Verwendbarkeit	Wahlpflichtmodul aus E für den Bachelorstudiengang Mathematik Pflichtmodul FP3 für den Bachelorstudiengang Technomathematik; Voraussetzung für alle weiterführenden Vorlesungen auf dem Gebiet der Strömungsmechanik (Master).
Angebotsturnus	jährlich im Wintersemester

E5. Ingenieurwissenschaften

(Bereich F. im Bachelorstudiengang Technomathematik.)

Ferner können alle weiteren Module der Bachelor- und Master-Studiengänge der Ingenieurwissenschaften mit Ausnahme der Mathematikmodule für Ingenieure zur Abdeckung der Modulbereichs Anwendungsfach "Ingenieurwissenschaften" in den Bachelorund Master-Studiengängen Mathematik und Technomathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

E6. Geoökologie

Alle Module der Bachelor-Studiengänge Geoökologie mit Ausnahme der Mathematikmodule für Naturwissenschaftler können zur Abdeckung des Modulbereichs Anwendungsfach "Geoökologie" im Bachelor- und Master-Studiengang Mathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

E7. Biologie

Alle Module der Bachelor-Studiengänge Biologie mit Ausnahme der Mathematikmodule für Naturwissenschaftler können zur Abdeckung des Modulbereichs Anwendungsfach "Biologie" im Bachelor- und Master-Studiengang Mathematik benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch dort.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots dieses Anwendungsfachs auf Antrag zulassen. Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen dieses Anwendungsfachs stammen.

Teil II Master-Module

A. Vertiefungsmodule

Vertiefte Kenntnisse in Mathematik

	Voutiefte Kenntniese in Mathematik
Modulname	Vertiefte Kenntnisse in Mathematik
	(Higher skills in Mathematics)
Modultyp	Vertiefungsmodul Master
Forschungsgebiet	Alle Forschungsgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	Die erfolgreichen Studierenden kennen die für die Forschung typischen mathematischen
	Techniken der Begriffsbildung, der Theorieentwicklung, der Beweisführung und der Anwendung
	in einem Bereich eines Forschungsgebiets. Im Unterschied zu den Absolvent(inn)en von
	Bachelormodul C1 können sie die vermittelten Techniken selbständiger anwenden und in
	Beziehung zu früher studierten mathematischen Vertiefungen setzen.
Inhalt	Eine Vertiefungsvorlesung mit Übung aus einem Forschungsgebiet.
	Im Master müssen drei Exemplare dieses Modul eingebracht werden mit der Regel, dass die
	dafür gewählten Vertiefungsvorlesungen weder alle drei aus demselben noch alle drei aus
	verschiedenen Forschungsgebieten stammen dürfen.
	Beispiele für Vertiefungsvorlesungen mit der Zuordnung zu ihren Forschungsgebieten finden
	sich auf den folgenden Seiten.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	laut kommentiertem Vorlesungsverzeichnis
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung (20 min) oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtmodul A1 für alle Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	Für jedes Forschungsgebiet mindestens eine passende Veranstaltung pro Jahr

Veranstaltungstitel	Dynamische Systeme (Dynamical Systems)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Höhere Analysis und Anwendungen
Verantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	 Verständnis für das Konzept eines Dynamischen Systems am Beispiel autonomer, gewöhnlicher Differentialgleichungen
	Fähigkeit, gewöhnliche Differentialgleichungen unter qualitativen Gesichtspunkten zu analysieren, insbesondere
	 Lösungsverhalten in der Nähe von stationären Punkten
	 Lösungsverhalten zweidimensionaler autonomer Differentialgleichungen
	 Lösungsverhalten in der Nähe periodischer Orbits
	Fähigkeit, rechnergestützte Hilfsmittel zur Analyse von dynamischen Systemen zu nutzen
	Fähigkeit, mathematische Resultate in einem konkreten Anwendungsumfeld zu interpretieren
	Fähigkeit, mathematische Überlegungen klar darzustellen, auch in Englischer Sprache
Inhalt	Fluß einer autonomen Differentialgleichung
	 Charakterisierung des Flusses in der Nähe einer stationären Lösung (Stabile und instabile Mannigfaltigkeit, Satz von Hartmann-Grobman)
	$ullet$ $lpha$ und ω -Limesmengen, Poincare-Bendixonson-Theorie
	Periodische Orbits, Poincare-Abbildung
	weitere Themen wie z. B. Bifurkationstheorie, chaotisches Verhalten, diskrete dynamische Systeme
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Basismodule Einführung in die Gewöhnlichen Differentialgleichungen
Leistungsnachweise	mündliche Prüfung oder Klausur
Leistungsnachweise	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
voi weilabai keit	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Höhere Analysis
	(Advanced Analysis)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Höhere Analysis und Anwendungen
Verantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Verständnis für die Konzepte der Maß - und Integrationstheorie
	$ullet$ Verständnis der wesentlichen Eigenschaften der L^p -Räume
	 Verständnis dafür, wie diese Begriffsbildungen aus den Bedürfnissen der angewandten Analysis entstehen
	 Verständnis dafür, wie diese Begriffsbildungen im Rahmen der Funktionalanalysis abstrahiert werden
	Fähigkeit, mathematische Überlegungen klar darzustellen, auch in Englischer Sprache
Inhalt	Grunglagen der angewandten Analysis, insbesondere
	Maß- und Integrationstheorie für allgemeine Borelmaße
	$ullet$ L^p -Räume (Vollständigkeit, Konvexitätseigenschaften, schwache Konvergenz)
	Integralungleichungen (Youngsche Ungleichung, Hardy-Littlewood-Sobolev-Ungleichung,)
	Kompaktheitskriterien
	 Ausgewählte Anwendungen (z. B. Variationsprobleme, Potentialtheorie,)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Integralgleichungen/Grundlagen der Funktionalanalysis (Integral Equations/Functional Analysis)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Höhere Analysis und Anwendungen
Verantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Kenntnis wichtiger Lösungsräume für partielle Differentialgleichungen
	 Verständnis für das Konzept der Übersetzung eines Differentialgleichungsproblems in eine Operatorengleichung
	 Fähigkeit, funktionalanalytische Methoden zur Lösung von Problemen aus den Anwendungen (Partielle Differentialgleichungen, Integralgleichungen, Numerische Approximation) einzusetzen
Inhalt	Wichtige Funktionenräume und Methoden der Funktionalanalysis, die in den Anwendungen zum Einsatz kommen, z.B.
	Fouriertransformation
	Beschränkte lineare Operatoren
	Fredholmsche Alternative
	Spektraltheorie kompakter Operatoren
	sowie weitere Themen.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Partielle Differentialgleichungen—Funktionalanalytische Methoden (Partial Differential Equations—Functional Analysis Methods)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Höhere Analysis und Anwendungen
Verantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Kenntnis wichtiger Lösungsräume für partielle Differentialgleichungen
	 Verständnis für das Konzept einer schwachen Lösung
	 Fähigkeit, funktionalanalytische Methoden auf Problemstellungen aus den partiellen Differentialgleichungen anzuwenden
	Fähigkeit, mathematische Überlegungen klar darzustellen, auch in Englischer Sprache
Inhalt	Wichtige Funktionenräume und Methoden der Funktionalanalysis, die bei der Behandlung partieller Differentialgleichungen zum Einsatz kommen, insbesondere
	Sobolevräume, Einbettungssätze
	 Schwache Lösungen elliptischer Gleichungen, Lemma von Lax-Milgram, Fredholmsche Alternative
	Regularität schwacher Lösungen elliptischer Gleichungen
	sowie weitere Themen wie z. B.
	Evolutionsgleichungen
	Halbgruppenmethoden
	Methoden der Variationsrechnung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	Einführung in die Partiellen Differentialgleichungen
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Aktuelle Entwicklungen aus Höhere Analysis und Anwendungen (Current trends in Applied Analysis / Nonlinear Dynamics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Höhere Analysis und Anwendungen
Verantwortliche	Math. III (Reelle Analysis), Math. VI (Part. Dgl. und Math. Physik)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich Höhere Analysis und Anwendungen vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Höhere Analysis und Anwendungen, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Optimale Steuerung gewöhnlicher Differentialgleichungen (Optimal Control of Ordinary Differential Equations)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor und Master Mathematik, Techno- u. Wirtschaftsmathematik
Forschungsgebiet	Optimale Steuerungen
Verantwortliche	Ingenieurmathematik, Math. V (Numerische Mathematik)
Lernziele	 Verständnis der Konzepte der Minimierung von Funktionalen über Funktionenräume Fähigkeit zur Analyse der notwendigen Bedingungen und deren Umsetzung in Mehrpunkt-Randwertprobleme für gewöhnliche Differentialgleichungen Fähigkeit zur Anwendung der Theorie auf Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften mit existierenden Software-Paketen
	Vorbereitung auf Bachelor- oder Masterarbeiten
Inhalt	Einführende Beispiele mit Einordnung in den geschichtlichen Rahmen
	Beziehungen zur Variationsrechnung
	Lineare Steuerprozesse, Steuerbarkeit, zeitoptimale lineare Steuerprozesse
	Nichtlineare Steuerprozesse
	Minimumprinzip der Optimalsteuerungstheorie
	Probleme mit linear auftretender Steuerung: bang-bang- und singuläre Steuerungen
	Probleme mit regulärer Hamiltonfunktion und nichtlinear auftretender Steuerung
	 Anwendungsbeispiele aus Luft- und Raumfahrt, Verfahrenstechnik, Robotik, Wirtschaft, u. a.
	 Optimalsteuerungsprobleme mit Ungleichungsnebenbedingungen, Steuerbeschränkungen, Zustandsbeschränkungen
	 Anwendungsbeispiele aus Luft- und Raumfahrt, Verfahrenstechnik, Robotik, Wirtschaft, u. a.
	Einführung in numerische Verfahren zur Lösung von Optimalsteuerungsproblemen
Dauer	1 Semester
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP Arbeitsaufwand	10 Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
Arbeitsauiwand	wochentilch 4 n Voriesung plus 4 n Nachbereitung = 120 n; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Module Analysis, Lineare Algebra, Gewöhnl. Differentialgleichungen.
Vorkenntnisse	
Leistungsnachweise	Mündliche Prüfung oder Klausur; Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik;
Angohototurous	Voraussetzung für Bachelor oder Masterarbeiten auf dem Gebiet der Optimalen Steuerung. nach Bedarf
Angebotsturnus	HIGHT DEUGH

Veranstaltung für "Ver Wirt Forschungsgebiet Opti Verantwortliche Inge	ptimale Steuerung partieller Differentialgleichungen btimal Control of Partial Differential Equations) ertiefte Kenntnisse in Mathematik"; Master Mathematik, Technomathematik, rtschaftsmathematik timale Steuerungen enieurmathematik • Einführung in ein hochaktuelles Forschungsgebiet der Angewandten Mathematik mit weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). • Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen • Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen • Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software • Vorbereitung auf Masterarbeiten • Einführende Beispiele und Konzepte
Veranstaltung für "Ver Wirt Forschungsgebiet Opti Verantwortliche Inge	ertiefte Kenntnisse in Mathematik"; Master Mathematik, Technomathematik, rtschaftsmathematik timale Steuerungen enieurmathematik • Einführung in ein hochaktuelles Forschungsgebiet der Angewandten Mathematik mit weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). • Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen • Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen • Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software • Vorbereitung auf Masterarbeiten
Forschungsgebiet Opti Verantwortliche Inge Lernziele	 timale Steuerungen tenieurmathematik Einführung in ein hochaktuelles Forschungsgebiet der Angewandten Mathematik mit weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
Verantwortliche Inge	 Einführung in ein hochaktuelles Forschungsgebiet der Angewandten Mathematik mit weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
Lernziele	 Einführung in ein hochaktuelles Forschungsgebiet der Angewandten Mathematik mit weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
	 weitreichender Anwendbarkeit auf hochkomplexe Aufgabenstellungen aus Ingenieur- und — mit Abstrichen — auch aus Wirtschaftswissenschaften (Financial Engineering). Fähigkeit zur Aufstellung und Analyse der notwendigen Bedingungen Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
	 Fähigkeit zur Anwendung der Theorie auf konkrete Problemstellungen Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
	 Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen mit existierender Software Vorbereitung auf Masterarbeiten
	Problemstellungen mit existierender Software • Vorbereitung auf Masterarbeiten
	Einführende Beispiele und Konzepte
Inhalt	·
	Linear-quadratische elliptische Probleme
	Linear-quadratische parabolische Probleme
	Überblick zu semilinearen Gleichungen
	Einführung in numerische Verfahren inkl. Software
	 Anwendungsbeispiele aus aktuellen Forschungsarbeiten vorwiegend aus den Ingenieurwissenschaften
Dauer 1 Se	Semester
Sprache deut	utsch oder englisch
Lehrformen Vorle	rlesung (4) mit Übungen (2).
LP 10	
	schentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	Übung plus 6 h Vor- und Nachbereitung = 120 h;
	h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
·	alifizierter Bachelor in Mathematik, insbesondere sehr gute Kenntnisse in Analysis sowie
l l	undkenntnisse in Numerischer Mathematik partieller Differentialgleichungen.
l l	undkenntnisse in Funktionalanalysis können im Laufe der Vorlesung sowie in den gleitseminaren erarbeitet werden.
	Indliche Prüfung oder Klausur;
	ifungsvorleistung: Erfolgreiche Teilnahme an den Übungen.
	hlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
l l	sterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus nach	ch Bedarf

Veranstaltungstitel	Variationsrechnung (Calculus of Variations)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor und Master Mathematik, Technomathematik, Wirtschaftsmathematik
Forschungsgebiet	Variationsrechnung
Verantwortliche	Ingenieurmathematik
Lernziele	 Verständnis der Konzepte der Minimierung von Funktionalen über Funktionenräume Fähigkeit zur Analyse der notwendigen Bedingungen und deren Umsetzung in Randwertprobleme für gewöhnliche Differentialgleichungen Fähigkeit zur Anwendung der Theorie auf einfachere Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften Vorbereitung auf Bachelorarbeiten
Inhalt	Einführende Beispiele mit Einordnung in den geschichtlichen Rahmen
	Euler-Lagrangesche Differentialgleichung und Weierstraß-Erdmannsche Eckenbedingungen
	Allgemeine Variation
	Euler-Lagrangesche Multiplikatorenregel
	Variationsprobleme mit Nebenbedingungen
	Legendre-Clebsch-Bedingungen
	 Anwendungsbeispiele aus Luft- und Raumfahrt, Verfahrenstechnik, Robotik, Wirtschaft, u. a.
	Jacobische Bedingung
	Weierstraßsche Bedingungen
	Carathéodorys Königsweg der Variationsrechnung (optional)
	Einführung in numerische Verfahren zur Lösung von Variationsproblemen
Dauer	1 Semester
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP Arbeitsaufwand	10 Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
AibellsaulWall0	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Module Analysis, Lineare Algebra, Gewöhnl. Differentialgleichungen.
Leistungsnachweise	Mündliche Prüfung oder Klausur
<u> </u>	Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Variationsrechnung und Optimale Steuerungen 1 (Calculus of Variations and Optimal Control 1)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor und Master Mathematik, Technomathematik, Wirtschaftsmathematik
Forschungsgebiet	Variationsrechnung und Optimale Steuerungen
Verantwortliche	Ingenieurmathematik
Lernziele	Verständnis der Konzepte der Minimierung von Funktionalen über Funktionenräume
	 Fähigkeit zur Analyse der notwendigen Bedingungen und deren Umsetzung in Mehrpunkt-Randwertprobleme für gewöhnliche Differentialgleichungen
	Fähigkeit zur Anwendung der Theorie auf einfachere Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften
	Vorbereitung auf Bachelorarbeiten
Inhalt	Einführende Beispiele mit Einordnung in den geschichtlichen Rahmen
	Euler-Lagrangesche Differentialgleichung und Weierstraß-Erdmannsche Eckenbedingungen der Variationsrechnung
	Allgemeine Variation
	Euler-Lagrangesche Multiplikatorenregel der Variationsrechnung
	Variationsprobleme mit Nebenbedingungen
	Optimalsteuerungsprobleme
	Legendre-Clebsch-Bedingungen der Variationsrechnung
	Minimumprinzip der Optimalsteuerungstheorie
	Anwendungsbeispiele aus Luft- und Raumfahrt, Verfahrenstechnik, Robotik, Wirtschaft, u. a.
Dauer	1 Semester, bei hinreichender Nachfrage Fortsetzung im darauffolgenden Semester
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
Aibellsauiwallu	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Module Analysis, Lineare Algebra, Gewöhnl. Differentialgleichungen.
Leistungsnachweise	Mündliche Prüfung oder Klausur
-	Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Variationsrechnung und Optimale Steuerungen 2 (Calculus of Variations and Optimal Control 2)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master Mathematik, Technomathematik, Wirtschaftsmathematik
Forschungsgebiet	Variationsrechnung und Optimale Steuerungen
Verantwortliche	Ingenieurmathematik
Lernziele	Fähigkeit zur Anwendung der Theorie auf komplexere Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften
	 Fähigkeit zur numerischen Berechnung optimaler Lösungen für konkrete Problemstellungen aus Ingenieur- und Wirtschaftswissenschaften mit existierenden Software-Paketen
	Vorbereitung auf Masterarbeiten
Inhalt	Optimalsteuerungsprobleme mit Ungleichungsnebenbedingungen, Steuer- und Zustandsbeschränkungen
	Probleme mit linear auftretender Steuerung: bang-bang- und singuläre Steuerungen
	 Anwendungsbeispiele aus Luft- und Raumfahrt, Verfahrenstechnik, Robotik, Wirtschaft, u. a.
	Jacobische Bedingung der Variationsrechnung
	Weierstraßsche Bedingungen der Variationsrechnung
	Carathéodorys Königsweg der Variationsrechnung (optional)
	Einführung in numerische Verfahren zur Lösung von Optimalsteuerungsproblemen
Dauer	Semester (Fortsetzung der gleichnamigen Vorlesung aus Vorsemester)
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Teil der Vorlesung sowie Einführung in die Numerische Mathematik
Vorkenntnisse	
Leistungsnachweise	Mündliche Prüfung oder Klausur
	Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Aktuelle Entwicklungen aus Variations-Rechnung/Optimale
	Steuerung
	(Current trends in Variational Calculus/Optimal Control)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Optimierung
Verantwortliche	Ingenieurmathematik, Math. V (Numerische Mathematik)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich
	Variations-Rechnung/Optimale Steuerung vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Variations-Rechnung/Optimale
	Steuerung, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Ringe und Moduln
	(Rings and Modules)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Algebra
Verantwortliche	Math. IV (Algebra)
Lernziele	
	Verständnis des Modulbegriffs
	Beherrschung von Techniken, einen Modul in eine direkte Summe von unzerlegbaren Untermoduln zu zerlegen
	Kenntnis wichtiger Beispiele
Inhalt	
	Halbeinfache Moduln
	Struktur halbeinfacher Ringe
	Artinsche und noethersche Moduln
	Semiperfekte Ringe
	Dualität von Ringen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule Lineare Algebra, Algebra
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Algebraische Zahlentheorie (Algebraic Number Theory)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Algebra
Verantwortliche	Math. IV (Algebra)
Lernziele	
	Verständnis des Begriffs der ganzen algebraischen Zahlen
	Beherrschung der Primidealzerlegungen in ganzen Ringerweiterungen
	Verständnis der wichtigsten Beispiele
	Total aline act monigoton 200ptote
Inhalt	
	Ganze Elemente
	Guilzo Liomonio
	Endlich erzeugte Moduln über Hauptidealringen
	Algebraische Zahlkörper
	Dedekindringe
	Gitterpunktsatz von Minkowski und die Endlichkeit der Klassenzahl
	Zerlegung von Primidealen in Erweiterungen
	• Geschichte des Fermat-Problems $X^n + Y^n = Z^n$
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule Lineare Algebra, Algebra, Zahlentheorie
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Kryptographie
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Cryptography)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Algebra
Verantwortliche	Math. II (Algebraische Kombinatorik), Math. VIII (Algebraische Geometrie)
Lernziele	 Verständnis der grundlegenden Methoden der Datenverschlüsselung, Identifikation und Authentifikation Beherrschung der wichtigsten Algorithmen der Kryptographie
Inhalt	Verschlüsselungsmethoden und Datensicherheit,
	 Public-Key-Verschlüsselung: RSA-Algorithmus, Rabin-Verfahren, Diffie-Hellman-Schlüsselaustausch, ElGamal-Verfahren,
	 Faktorisierungsmethoden, Diskreter Logarithmus, Hash-Funktionen,
	Digitale Signatur,
	Gruppen und elliptische Kurven,
	Digitale Identifizierung.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodul Lineare Algebra; Aufbaumodule Algebra, Zahlentheorie
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Codierungstheorie (Coding Theory)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Algebra
Verantwortliche	Math. II (Algebraische Kombinatorik), Math. VIII (Algebraische Geometrie)
Lernziele	 Verständnis der grundlegenden Methoden der Theorie und Anwendung von fehlerkorrigierenden linearen Codes
	Beherrschung der wichtigsten Klassen von linearen Codes und den Algorithmen der Codierung und Decodierung
Inhalt	Fehlerkorrigierende Codes, Isometrieklassen linearer Codes,
	Codierung und Decodierung,
	Parameter linearer Codes und Abschätzungen für diese, optimale Codes,
	zyklische Codes, Quadratische-Reste-Codes,
	Anwendungen (z.B. Musikübertragung mittels CD, Bildkorrektur),
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodul Lineare Algebra; Aufbaumodule Algebra, Zahlentheorie
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Kombinatorik und Diskrete Strukturen
	(Combinatorics and Discrete Structures)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Fachgebiet	Computeralgebra
Verantwortliche	Math. II (Computeralgebra)
Lernziele	
	 Verständnis der grundlegenden Begriffe und Resultate der Kombinatorik Diskreter Strukturen
	Beherrschung der wichtigsten Methoden zur Abzählung und Konstruktion Diskreter Strukturen und Anwendungen in Mathematik, Natur- und Wirtschaftswissenschaften
Inhalt	
	Mengen, Halbordnungen, Verbände, Inzidenzstrukturen
	Inversions- und Abzählmethoden,
	Grundlegende Algorithmen,
	Konstruktion von Katalogen Diskreter Strukturen mit vorgegebenen Parametern, Implementierung entsprechender Programme,
	Anwendungen.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodul Lineare Algebra; Kenntnisse in C++
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf (in ca. zweijährigem Turnus)

Veranstaltungstitel	Gruppentheorie (Group Theory)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Fachgebiet	Algebra
Verantwortliche	Math. II,IV
Lernziele	 Verständnis der grundlegenden Begriffe und Resultate aus der Gruppentheorie, Beherrschung der wichtigsten Anwendungen in Mathematik und Naturwissenschaften,
Inhalt	
	 Abstrakte Gruppen, Permutationsgruppen, Matrixgruppen, Beispiele, Struktursätze, Algorithmen, Anwendungen in Mathematik und Naturwissenschaften.
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule Lineare Algebra, Aufbaumodul Algebra
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf (in ca. zweijährigem Turnus)

Veranstaltungstitel	Aktuelle Entwicklungen aus Algebra/Zahlentheorie/Diskrete Mathematik (Current trends in Algebra/Number Theory/Discrete Mathematics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Algebra/Zahlentheorie/Optimierung
Verantwortliche	Math. II (Algebraische Kombinatorik), Math. IV (Algebra)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich Algebra/Zahlentheorie/Diskrete Mathematik vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Algebra/Zahlentheorie/Diskrete Mathematik, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Kommutative Algebra (Commutative Algebra)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Mathe VIII (Algebraische Geometrie)
Lernziele	
Lonzide	 Verständnis der grundlegenden Konzepte und Methoden der kommutativen Algebra Verständnis grundlegender Probleme und Resultate der kommutativen Algebra und
	deren Anwendungen
Inhalt	
	Ringe, Ideale, Moduln und ihre Homomorphismen
	Lokalisierung und Vervollständigung
	Noethersche Ringe und Primärzerlegung
	Hilbertscher Nullstellensatz
	Krulldimension
	ausgewählte Anwendungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismodul Lineare Algebra, Aufbaumodul Einführung in die Zahlentheorie und Algebraische
Vorkenntnisse	Strukturen
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien,; Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Riemannsche Flächen (Riemann surfaces)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
Verantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis des Konzeptes einer Riemannschen Fläche
	Beherrschung der grundlegenden Techniken: Garbentheorie und Kohomologietheorie
	Beherrschung der Techniken zu Berechnung von Kohomologiegruppen
	Verständnis der grundlegende Resultate der Theorie der Riemannschen Flächen
Inhalt	Begriff der Riemannschen Fläche
	Garben - und Kohomologietheorie
	Differentialformen
	Satz von Riemann-Roch und Anwendungen
	Hodge-Theorie
	Überlagerungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule Analysis, Lineare Algebra, Funktionentheorie
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angohototurnus	nach Bedarf
Angebotsturnus	Hauff Deualf

Veranstaltungstitel	Algebraische Topologie
	(Algebraic topology)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	
	Verständnis der grundlegenden Konzepte und Methoden der algebraischen Topologie
	 Beherrschung der Techniken zur Berechnung von Homologiegruppen, Kohomologiegruppen, Homotopiegruppen
	 Verständnis grundlegender Probleme und Resultate der algebraischen Topologie und deren Anwendungen
Inhalt	
	Homotopie und Homotopiegruppen
	Faserbündel und Überlagerungen
	Homologie und Kohomologie, Mayer-Vietoris-Sequenz und Ausschneidung
	Ringstruktur der Kohomologie und Anwendungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismodule Lineare Algebra, Analysis, Vektoranalysis
Vorkenntnisse	Aufbaumodul Einführung in die Topologie
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien
	Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Höhere Funktionentheorie
	(A second chapter on holomorphic functions)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Mathe VIII (Algebraische Geometrie)
Lernziele	
	 Verständnis der grundlegenden Konzepte und Methoden der Theorie von holomorphen und meromorphe Funktionen, insbesonders von periodischen Funktionen
	Beherrschung der Techniken zur Berechnung von elliptischen Funktionen und elliptischen Kurven
	 Verständnis grundlegender Probleme und Resultate über elliptische Integralen und Werte von holomorpher Funktionen
Inhalt	
	Periodische Funktionen einer Veränderlichen nach Weierstrass
	Körper von elliptische Funktionen
	ullet Elliptische Kurven, j -Funktion und Anwendungen am Picardschen Satz
	Periodische Funktionen nach Jacobi: Theta Reihen
	Abelche Funktionen und Riemannsche Bedingungen
	Automorphismen der Halbebene und Automorphe Funktionen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismoduln Lineare Algebra, Analysis, Vektoranalysis, Funktionentheorie
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien
	Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Riemannsche Mannigfaltigkeiten und Liesche Gruppen (Riemannian Geometry and Lie Groups)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	
	 Verständnis der grundlegenden Konzepte und Methoden der reellen Differentialgeometrie Beherrschung der Techniken zur Berechnung von Riemannschen Ricci und skalaren
	Krümmung, von Lie Algebren Isomorphismen
	 Verständnis grundlegender Probleme und Resultate der extrinsischen und intrinsischen Riemannschen Geometrie
Inhalt	
	Mannigfaltigkeiten, Riemannsche Metriken
	Riemannsche Krümmung, Ricci und skalare Krümmung
	Levi Civita Parallelismus
	Zweite Fundamentalform,Sätze von Gauss und Codazzi Mainardi
	Frobenius Integrabilität und Spezialkoordinaten
	Liesche Gruppe und Algebren: die 3 Fundamentalsätze von Lie
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismoduln Lineare Algebra, Analysis, Vektoranalysis
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien;
.,	Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Algebraische Geometrie (Algebraic Geometry)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Geometrie
Verantwortliche	Math. II (Algebraische Kombinatorik), Math. VIII (Algebraische Geometrie)
Lernziele	Verständnis des Konzeptes einer algebraischen Varietät
	Beherrschung der grundlegenden Techniken der klassischen algebraischen Geometrie
	Verständnis einiger grundlegender Resultate der algebraischen Geometrie
	Verständnis wichtiger Beispiele
Inhalt	Affine und projektive Varietäten
	Tangentialraum und Dimension
	Grundbegriffe der birationalen Geometrie
	Satz von Bézout
	Differentialformen
	Algebraische Flächen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule Analysis, Lineare Algebra, Algebra
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Komplexe Differentialgeometrie
veranstallungsliter	(Complex Differential Geometry)
Vous pataltuus e füu	
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Mathe VIII (Algebraische Geometrie)
Lernziele	
	 Verständnis der grundlegenden Konzepte der Differentialgeometrie komplexer Mannigfaltigkeiten
	 Beherrschung der Techniken zur Berechnung von Krümmungen, Chernklassen, Kohomologiegruppen und Invarianten kompakter Mannigfaltigkeiten
	 Verständnis grundlegender Resultate der komplexen Differentialgeometrie und deren Beweismethoden
Inhalt	
	Hermitesche Vektorbündel, Krümmung, Chernklassen
	Hodge-Zerlegung von vektorwertigen Differentialformen
	Kählermetriken und Hodgezerlegung, Anwendungen
	Kodairascher Verschwindungssatz und Anwendungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismoduln Lineare Algebra, Analysis, Vektoranalysis, Funktionentheorie;
Vorkenntnisse	
	je nach Strukturierung der Vorlesung Riemannsche Flächen oder Komplexe Mannigfaltigkeiten
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien
	Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Höhere Geometrie/Komplexe Analysis

Veranstaltungstitel	Komplexe Mannigfaltigkeiten (Complex Manifolds)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik";
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
verantwortlich	Math. I (Komplexe Analysis), Mathe VIII (Algebraische Geometrie)
Lernziele	
	Verständnis des Begriffs der komplexe Mannigfaltigkeit und deren Differentialrechnung
	Beherrschung der Techniken der Garben- und Kohomologietheorie kompplexer Mannigfaltigkeiten
	 Verständnis grundlegender Resultate der komplexen Analysis von Mannigfaltigkeiten und deren Beweismethoden
Inhalt	
	Grundlegende Eigenschaften holomorpher Funktionen mehrerer Variablen
	Komplexe Mannigfaltigkeiten, Differentialformen, Satz von Dolbeault, Beispiele
	Garben- und Kohomologietheorie
	Divisoren, Vektorbündel
	Kohomologie Steinscher und kompakter Mannigfaltigkeiten, Anwendungen
	Bimeromorphie Geometrie komplexer Mannigfaltigkeiten
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2) über 1 Semester
LP	10
Empfohlene	Basismoduln Lineare Algebra, Analysis, Vektoranalysis, Funktionentheorie;
Vorkenntnisse	
Leistungsnachweise	Klausur oder mündliche Prüfung;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Arbeitsaufwand	Wöchentlich 4h Vorlesung plus 4h Nachbereitung = 120 h
	2h Übung plus 6h Vor- und Nachbereitung = 120 h
	40h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in den Semesterferien Gesamt: 300h.
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Höhere Geometrie/Komplexe Analysis

Veranstaltungstitel	Aktuelle Entwicklungen aus Höhere Geometrie / Komplexe Analysis (Current trends in Advanced Geometry / Complex Analysis)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Höhere Geometrie / Komplexe Analysis
Verantwortliche	Math. I (Komplexe Analysis), Math. VIII (Algebraische Geometrie)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich Höhere Geometrie / Komplexe Analysis vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Höhere Geometrie/Komplexe Analysis, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Numerische Methoden für gewöhnliche Differentialgleichungen (Numerical methods for ordinary differential equations)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor und Master (ab 4./1. Fachsemester)
Forschungsgebiet	Numerische Mathematik
Verantwortliche	Math. V (Numerische Mathematik)
Lernziele	Verständnis der Funktionsweise numerischer Algorithmen zur Lösung gewöhnlichen Differentialgleichungen
	 Fähigkeit zur Wahl eines geeigneten Algorithmus für eine gegebene Klasse gewöhnlicher Differentialgleichungen
	Fähigkeit zur Anpassung von Standard-Algorithmen an neue Problemstellungen
	Fähigkeit zur Implementierung der behandelten Algorithmen in MATLAB oder einer höheren Programmiersprache
Inhalt	Einschrittverfahren für gewöhnliche Differentialgleichungen
	 Konvergenztheorie
	Taylor-, Runge-Kutta- und Extrapolationsverfahren
	Verfahren für steife Differentialgleichungen
	 Schrittweitensteuerung
	Mehrschrittverfahren für gewöhnliche Differentialgleichungen
	Konvergenztheorie
	Beispiele konkreter Verfahren
	Einführung in Algorithmen für ausgewählte weitere Problemklassen, z.B.
	 Randwertprobleme gewöhnlicher Differentialgleichungen
	 stochastische gewöhnliche Differentialgleichungen
	- partielle Differentialgleichungen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP Arbeitseufwand	10 Wäshantlich 4 h Verlagung plus 4 h Nachharaitung 100 h
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Module Analysis, Lineare Algebra, Einführung in die Numerik, Gewöhnliche
Vorkenntnisse	Differentialgleichungen
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	zweijährlich im Sommersemester

Veranstaltungstitel	Einführung in die Numerik partieller Differentialgleichungen (Introduction to Numerical Analysis of Partial Differential Equations)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor Technomathematik "Vertiefte Kenntnisse in Mathematik"; Master Mathematik und Technomathematik, evtl. auch Wirtschaftsmathematik
Forschungsgebiet	Numerische Mathematik
Verantwortliche	Math. V (Numerische Mathematik), Ingenieurmathematik
Lernziele	Verständnis der grundlegenden Eigenschaften der unterschiedlichen Typen partieller Differentialgleichungen
	Vermittlung von Kenntnissen über grundlegende Diskretisierungsschemata
	 Vermittlung von Kenntnissen über grundlegende Verfahren zur numerischen Lösung partieller Differentialgleichungen
	 Vermittlung von Kenntnissen über grundlegende Techniken zur Fehlerschätzung und Gitteradaption
Inhalt	Klassifikation partieller Differentialgleichungen, Diskussion zugehöriger Randwertaufgaben bzw. Anfangs-Randwertaufgaben
	Finite-Differenzen-Approximationen
	Elliptische Differentialgleichungen: Galerkin-Verfahren und Finite-Elemente
	 Iterative Lösung großer linearer Gleichungssysteme: Mehrgitterverfahren, Vorkonditionierte Gradientenverfahren
	Parabolische Differentialgleichungen: Linienmethode, Crank-Nicolson-Verfahren
	Hyperbolische Erhaltungsgleichungen: Methode der Charakteristiker, Differenzenverfahren in Erhaltungsform
Dauer	1 Semester
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h; 2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Module Analysis, Lineare Algebra, Gewöhnl. Differentialgleichungen, Einführung in die Numerische Mathematik
Leistungsnachweise	Mündliche Prüfung oder Klausur; Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Voraussetzung für Bachelor- und Masterarbeiten auf dem Gebiet der Numerik partieller Differentialgleichungen, im Falle von Masterarbeiten auch auf dem Gebiet der Optimierung bei partiellen Differentialgleichungen
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Numerische Methoden der Finanzmathematik (Computational Finance)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor und Master (ab 5./1. Fachsemester)
Forschungsgebiet	Numerische Mathematik, Finanzmathematik
Verantwortliche	Math. V (Numerische Mathematik), Wirtschaftsmathematik
Lernziele	Verständnis der Funktionsweise numerischer Algorithmen zur Bewertung von Optionen und anderen Derivaten
	 Fähigkeit zur Wahl eines geeigneten Algorithmus für ein gegebenes Problem der Optionsbewertung
	Fähigkeit zur Anpassung von Standard-Algorithmen an neue Problemstellungen
	 Fähigkeit zur Implementierung der behandelten Algorithmen in MATLAB oder einer höheren Programmiersprache
Inhalt	Einführung in das Problem der Bewertung von Optionen und anderen Derivaten
	Behandlung der folgenden Klassen von Algorithmen
	- Binomialmethoden
	 Numerische Verfahren für stochastische Differentialgleichungen
	 Monte–Carlo Methoden
	 Numerische Verfahren zur Lösung der Black–Scholes–Gleichung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Module Analysis, Lineare Algebra, Einführung in die Numerik, Einführung in die Stochastik
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur;
-	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Vertiefte Kenntnisse in Mathematik"; C1 für die
verwendbarkeit	
verwendbarkeit	Bachelorstudiengänge (ab 4. Fachsemester) bzw.
verwendbarkeit	Bachelorstudiengänge (ab 4. Fachsemester) bzw. A1 für die Masterstudiengänge (ab 1. Fachsemester) Mathematik, Technomathematik,
Angebotsturnus	

Veranstaltungstitel	Mathematische Modellierung (Mathematical modeling)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor Mathematik und Technomathematik
	"Vertiefte Kenntnisse in Mathematik"; Master Mathematik und Technomathematik
Forschungsgebiet	Dynamische Systeme, Differentialgleichungen, Numerische Mathematik
Verantwortliche	Ingenieurmathematik , Math. V (Numerische Mathematik)
Lernziele	Verständnis des exponentiellen und logistischen Wachstums und ihrer Grenzen
	Verständnis für kompliziertere Modellierungen
	Kennenlernen von mathematischen Werkzeugen zur Analyse realitätsnaher Modelle
	Fähigkeit zur eigenständigen Modellierung und geschlossenen bzw. numerischen Lösung
	Vorbereitung auf Masterarbeiten
	voissionally administrational
Inhalt	Biologische Modelle: DGL-Modelle für eine und zwei Arten
	z.B. Chemische Modelle: Reaktionskinetik, Enzyme, Krankheiten
	• z.B. Mechanische Modelle
Dauer	1 Semester
Sprache	deutsch oder englisch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Module Analysis, Lineare Algebra, Gewöhnl. Differentialgleichungen.
Vorkenntnisse	
Leistungsnachweise	Mündliche Prüfung (20 min)
	Prüfungsvorleistung: Erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik Voraussetzung für viele Bachelorarbeiten und Masterarbeiten
Angebotsturnus	nach Bedarf
Angebotsturius	Hadii Dedali

V . 11 . 25 . 1	Alstrolla Fatroialdon son accada y Norma via alacia Mathagastila
Veranstaltungstitel	Aktuelle Entwicklungen aus der Numerischen Mathematik
	(Current trends in Numerical Mathematics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Numerische Mathematik
Verantwortliche	Ingenieurmathematik, Math. V (Numerische Mathematik)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich
	Numerik vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Numerik, Details im kommentierten
	Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Mathematische Statistik (Mathematical Statistics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	Aneignung statistischer Modellbildung und der statistischen Schlussweise
	Optimierungs- und spieltheoretische Formulierung statistischer Entscheidungsprobleme
	Skepsis gegenüber Modellannahmen und klassischer Optimalität
	 Fähigkeit, mathematische Methoden auf statistische Problemstellungen anzuwenden und souveräne Beherrschung der mathematischen Beweisführung
	Fähigkeit zur klaren Darstellung auch im Englischen
	Fähigkeit zum Studium von Originalliteratur
	Umgang mit statistischer Software
Inhalt	Robuste einseitige Tests
	Optimale zweiseitige Tests in einparametrigen Verteilungsklassen
	Testtheorie für mehrparametrige Exponentialfamilien
	Robuste minimax Lokations M-Schätzung für gross-error Umgebungen
	Asymptotisch lineare Schätzer und ihre Konstruktion
	Optimal robuste Influenzkurven (minmax MSE)
	Rechnergestützte Auswertung statistischer Verfahren
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
Empfohlene	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h. Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Vorkenntnisse	Dasismodule, Elitiditidity in die Stochastik, Elitiditidity in die Statistik
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Asymptotische Statistik
Varanataltura e für	(Asymptotic Statistics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	
Lemziele	Formulierung endlichdimensionaler Aspekte statistischer Modelle
	Beherrschung der schwachen Konvergenz von Verteilungen
	Herleitung der Asymptotik statistischer Verfahren
	Bestimmung asymptotisch optimaler Verfahren in konkreten Modellen
	 Fähigkeit, mathematische Methoden auf statistische Problemstellungen anzuwenden und Fähigkeit zur klaren Darstellung (auch im Englischen)
	Fähigkeit zum Studium von Originalliteratur
	Umgang mit statistischer Software
Inhalt	 Schwache Konvergenz (charakteristische Funktionen, Straffheit, Prokhorov, Stetigkeitssatz, Glivenko-Cantelli- und Donsker-Klassen)
	$ullet$ Loglikelihoods, Benachbartheit, L_2 -Differenzierbarkeit parametrischer Modelle
	Faltungssatz und asymptotische Minimaxschranke
	Asymptotische Schätztheorie für nichtparametrische statistische Funktionale
	Konstruktion und Berechnung asymptotisch optimaler Schätzer
	Nichtparametrische Regression und Dichteschätzung
	Bootstrap (Konsistenz und Anwendungen)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
Empfohlene	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Vorkenntnisse	Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Leistungsnachweise	mündliche Prüfung oder Klausur;
Loiotarigoriaoriwoloe	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Lineare Modelle und Multivariate Statistik (Linear Models and Multivariate Statistics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	Kenntnis der Modellierung mit linearen statistischen Modellen bei mehrdimensionalen Beobachtungen
	Fähigkeit zur Formulierung statistischer Hypothesen
	Beherrschung der Verteilungstheorie und statistischen Schlußweise
	Fähigkeit zur Herleitung statistischer Verfahren nach entscheidungstheoretischen Kriterien
	 Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache klar darzustellen
	Fähigkeit zum Studium von Originalliteratur
	Umgang mit statistischer Software
Inhalt	Lineare Modelle und Normalverteilungsfamilien
	Schätztheorie, Tests und Konfidenzschätzer (Aitken, F-Test)
	generalisierte lineare Modelle
	Robuste Regression
	 Multivariate lineare Modelle (Hotellings T²)
	Rechnergestützte Auswertung statistischer Verfahren
	ggfs. Reduktion durch Invarianz (Hunt-Stein), Hauptkomponenten- und Faktoranalysis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h; 40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Stochastische Prozesse (Stochastic Processes)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1.
Toranotaliang lan	Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	Kenntnis und Konstruktion von Klassen stochastischer Prozesse
	 Kenntnis der vielfältigen Anwendungen (auf Warteschlangen, Lagerhaltung, Bevölkerungsdynamik, Optionsbewertung,)
	Beherrschung der statistischen Schlußweise
	Fähigkeit, mathematische Methoden auf stochastische Problemstellungen anzuwenden und souveräne Beherrschung der mathematischen Beweisführung
	Fähigkeit, mathematische Überlegungen auch in englischer Sprache klar darzustellen
	Fähigkeit zum Studium von Originalliteratur
	Umgang mit statistischer Software
Inhalt	Poisson-Prozess
	Erneuerungstheorie
	Markov-Ketten (diskrete, stetige Zeit)
	Martingale und optimales Stoppen
	Stationäre Prozesse und Ergodensatz
	Brownsche Bewegung und andere Markov-Prozesse
	Stochastische Prozesse und Finanzmathematik
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Support Vector Machines (Support Vector Machines)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	Verständnis von Support Vector Machines (SVMs)
	Fähigkeit, SVMs in der Praxis anwenden zu können
	statistische Eigenschaften von SVMs (Existenz, Eindeutigkeit, Konsistenz, Robustheit)
	Fähigkeit zum Studium von Originalliteratur
	Umgang mit Software zur Anwendung von SVMs
Inhalt	Verlustfunktionenen
	Kerne und reproduzierende Kern-Hilbert Räume
	Definition von SVMs
	Asymptotische Versionen von SVMs
	Statistische Eigenschaften von SVMs
	SVMs für Klassifikationsprobleme
	SVMs für Regressionsprobleme
	Robustheit von SVMs
	Numerische Aspekte von SVMs
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Ubung plus 6 h Vor- und Nachbereitung = 120 h;
Empfohlene	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h. Basismodule, Einführung in die Stochastik, Einführung in die Statistik, Funktionalanalysis
Vorkenntnisse	Dasismodulo, Elitariang in die Otochastik, Elitariang in die Otatistik, i diktionalaharysis
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Wahrscheinlichkeitstheorie (Probability Theory)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Stochastik
Verantwortliche	Stochastik
Lernziele	 Erwerb des mathematischen Rüstzeugs für weitergehende Vorlesungen in der Stochastik Umgang mit bedingten Erwartungswerten, charakteristischen Funktionen und der schwachen Konvergenz von Wahrscheinlichkeitsmaßen in endlich- und in unendlich-dimensionalen Räumen
	Fähigkeit zum Studium von Originalliteratur
Inhalt	bedingte Erwartungswerte charakteristische Funktionen
	 schwache Konvergenz von Wahrscheinlichkeitsmaßen in endlich-dimensionalen Räumen funktionale Grenzwertsätze (Donsker's Theorem)
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltung für	Veranstaltungstitel	Zeitreihenanalyse
Forschungsgebiet Stochastik Verantwortliche Stochastik Lernziele • Kenntnis statistischer Modelle für zeitabhängige Beobachtungen • Beherrschung der statistischen Schlußweise • Fähigkeit zur Herleitung statistischer Schätz- und Prognoseverfahren nach entscheidungstheoretischen Kriterien • Analysefähigkeit im Zeit- und Frequenzbereich • Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen • Fähigkeit zum Studium von Originalliteratur • Umgang mit statistischer Software Inhalt • Stationäre Prozesse und Spektraldarstellung • ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) • Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) • Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate • Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten • Zustandsraummodelle und der Kalman-Filter • Rechnergestützte Auswertung statistischer Verfahren		(Time series analysis)
Forschungsgebiet Verantwortliche Stochastik Stochastik Lernziele	Veranstaltung für	· · · · · · · · · · · · · · · · · · ·
Verantwortliche Stochastik		,
Kenntnis statistischer Modelle für zeitabhängige Beobachtungen Beherrschung der statistischen Schlußweise Fähigkeit zur Herleitung statistischer Schätz- und Prognoseverfahren nach entscheidungstheoretischen Kriterien Analysefähigkeit im Zeit- und Frequenzbereich Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren		
Beherrschung der statistischen Schlußweise Fähigkeit zur Herleitung statistischer Schätz- und Prognoseverfahren nach entscheidungstheoretischen Kriterien Analysefähigkeit im Zeit- und Frequenzbereich Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache 3 Semester Geutsch	Verantwortliche	Stochastik
Fähigkeit zur Herleitung statistischer Schätz- und Prognoseverfahren nach entscheidungstheoretischen Kriterien Analysefähigkeit im Zeit- und Frequenzbereich Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren	Lernziele	Kenntnis statistischer Modelle für zeitabhängige Beobachtungen
entscheidungstheoretischen Kriterien Analysefähigkeit im Zeit- und Frequenzbereich Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren		Beherrschung der statistischen Schlußweise
Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache kladarzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		
darzustellen Fähigkeit zum Studium von Originalliteratur Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer Dauer Sprache 1 Semester deutsch		Analysefähigkeit im Zeit- und Frequenzbereich
Umgang mit statistischer Software Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		 Fähigkeit, statistische und mathematische Überlegungen auch in englischer Sprache klar darzustellen
Inhalt Stationäre Prozesse und Spektraldarstellung ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		Fähigkeit zum Studium von Originalliteratur
ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität) Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		Umgang mit statistischer Software
Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus) Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch	Inhalt	Stationäre Prozesse und Spektraldarstellung
Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		 ARMA-Modelle (lineare Filter, Invertierbarkeit, Kausalität)
Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		 Vorhersage stationärer Prozesse (Durbin-Levinson, Innovationsalogrithmus)
Zustandsraummodelle und der Kalman-Filter Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		Schätztheorie für ARMA-Modelle (Yule-Walker, Maximum-Likelihood, Kleinste-Quadrate)
Rechnergestützte Auswertung statistischer Verfahren Dauer 1 Semester Sprache deutsch		 Robuste Schätztheorie für Umgebungen von Übergangswahrscheinlichkeiten
Dauer 1 Semester Sprache deutsch		Zustandsraummodelle und der Kalman-Filter
Sprache deutsch		Rechnergestützte Auswertung statistischer Verfahren
·	Dauer	1 Semester
·	Sprache	deutsch
	Lehrformen	Vorlesung (4) mit Übungen (2)
LP 10		<u> </u>
Arbeitsaufwand Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;	Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;		
40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.		
Empfohlene Basismodule, Einführung in die Stochastik, Einführung in die Statistik Vorkenntnisse	-	<u> </u>
Leistungsnachweise mündliche Prüfung oder Klausur		mündliche Prüfung oder Klausur
Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen	<u> </u>	
Verwendbarkeit Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der	Verwendbarkeit	* *
Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik		, , , , , , , , , , , , , , , , , , , ,
Angebotsturnus nach Bedarf	Angebotsturnus	

Veranstaltungstitel	Aktuelle Entwicklungen aus der Stochastik
	(Current trends in Stochastics)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Stochastik/Statistik
Verantwortliche	Stochastik
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich Stochastik vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Stochastik, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule, Einführung in die Stochastik, Einführung in die Statistik
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Ganzzahlige Lineare Optimierung (Integer Linear Optimization)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Diskrete Optimierung
Verantwortliche	Math. V (Numerische Mathematik), Wirtschaftsmathematik
Lernziele	Kenntnis wesentlicher Standard-Problemtypen der Ganzzahligen Linearen Optimierung
	 Verständnis und Beherrschung der Polyedrischen Methode zur Bestimmung von Schranken für Ganzzahlige Lineare Optimierungsaufgaben
	 Verständnis und Berherrschung der wichtigsten numerischen Lösungsverfahren für die Ganzzahlige Lineare Optimierung, insbesondere Branch-and-Bound
	Fähigkeit zu deren Computerimplementierung in einer höheren Programmiersprache
	 Fähigkeit zur Identifikation, Modellierung und Lösung von praktischen Problemstellungen der Ganzzahligen Linearen Optimierung
	 Fähigkeit, Standard-Software zur Modellierung und Lösung Ganzzahliger Linearer Optimierungsaufgaben zu benutzen
Inhalt	Beispiele für Ganzzahlige Lineare Optimierungsaufgaben
	Branch-and-Bound
	Komplexität von Ganzzahliger Linearer Optimierung
	Polyedrische Methode zur Schrankenbestimmung
	Ganzzahlige Polyeder
	Gültige Ungleichungen und Schnittebenen
	Dualität, Relaxierungen, Zerlegungen
	Polynomiale Komplexität in fester Dimension
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
Empfohlore	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Module "Einführung in die Optimierung" und "Graphen-und Netzwerkalgorithmen"
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik;
	Voraussetzung für ein Seminar in Diskreter Optimierung
Angebotsturnus	etwa alle zwei Jahre

Veranstaltungstitel	Online-Optimierung (Online Optimization)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiet	Diskrete Optimierung
Verantwortliche	Math. V (Numerische Mathematik), Wirtschaftsmathematik
Lernziele	Kenntnis von Modellen für die Optimierung unter Unsicherheit bzgl. unbekannter zukünftiger Ereignisse
	Beherrschung wichtiger Methoden zum Entwurf und zur Analyse von Online-Algorithmen und/oder Politiken
	 Kenntnis der Meilenstein-Resultate der kompetitiven Analyse (z. B. Paging) und der dynamischen Programmierung (z. B. Lagerhaltung)
	 Fähigkeit zur Identifikation, Modellierung und Lösung von praktischen Problemstellungen der Online-Optimierung
Inhalt	Beispiele für Online-Optimierungs-Probleme mit und ohne stochastische Information
	Kompetitive Analyse
	 Beispiele und elementare Techniken
	- Paging
	Metrische Tasksysteme
	- k-Server-Problem
	Netzplanung
	Diskrete Markovsche Entscheidungsprobleme in diskreter Zeit
	Beispiele und das allgemeine Modell
	Probleme mit endlichem Horizont und Dynamisches Programmieren
	 Probleme mit unendlichem Horizont und Numerische Verfahren
Davisi	1 Occupation
Dauer	1 Semester
Sprache Lehrformen	deutsch Vorlesung (4) mit Übungen (2)
Lennormen	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
Arbeitsauiwanu	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
13. Hallabarrott	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik;
	Voraussetzung für ein Seminar in Diskreter Optimierung
Angebotsturnus	etwa alle zwei Jahre

Veranstaltungstitel	Nichtlineare Optimierung
Veranstaltung für	(Nonlinear Programming) "Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1.
	Fachsemester)
Forschungsgebiete	Optimierung
Verantwortliche	Math. V (Numerische Mathematik), Wirtschaftsmathematik
Lernziele	 Verständnis und Beherrschung der Optimalitäts-, Dualitäts- und Sensitivitätstheorie der konvexen Optimierung
	 Verständnis notwendiger und hinreichender Optimalitätsbedingungen für differenzierbare Optimierungsprobleme
	 Verständnis und Beherrschung der wichtigsten numerischen Lösungsverfahren für nichtlineare Optimierungsprobleme
	 Fähigkeit zur Modellierung und Lösung praktischer Problemstellungen der nichtlinearen Optimierung
	 Fähigkeit, Standard-Software zur Modellierung und Lösung nichtlinearer Optimierungsaufgaben zu benutzen und weiter zu entwickeln
Inhalt	Modellierung nichtlinearer Optimierungsprobleme
	Optimalitätsbedingungen, Dualität und Sensitivität für konvexe Optimierungsprobleme
	Optimalitätsbedingungen und Sensitivität für differenzierbare Optimierungsprobleme
	 Methode der zulässigen Richtungen, Projektionsverfahren, Lagrange-Newton-Verfahren und SQP-Methode, quadratische Optimierung und Komplementaritätsalgorithmen, Branch- and Bound- and Cut-Methode
	Ausblick auf die nichtglatte Optimierung und globale Optimierungsverfahren
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene Vorkenntnisse	Module Analysis, Lineare Algebra, Einführung in die Numerik
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Mathematische Kontrolltheorie (Mathematical Control Theory)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Bachelor (ab 4. Fachsemester) oder Master (ab 1. Fachsemester)
Forschungsgebiete	Nichtlineare Dynamik, Optimierung
Verantwortliche	Math. V (Numerische Mathematik)
Lernziele	Einblick in Methoden und Konzepte der mathematischen Kontrolltheorie
	Fähigkeit zur Lösung ausgewählter Probleme aus der Mathematischen Kontrolltheorie
	Fähigkeit zur Anwendung dieser Lösungskonzepte auf praktische Problemstellungen
Inhalt	Definition und Klassifizierung von Kontrollsystemen
	Qualitative Analyse von Kontrollsystemen
	Methoden zum Reglerentwurf, z.B.
	Methoden der linearen Algebra
	Methoden der optimalen Steuerung
	Methoden basierend auf Lyapunov Funktionen
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Module Analysis, Lineare Algebra, Einführung in die Numerik, Gewöhnliche
Vorkenntnisse	Differentialgleichungen, Numerische Methoden für Differentialgleichungen
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

Veranstaltungstitel	Aktuelle Entwicklungen aus der Optimierung (Current trends in Optimization)
Veranstaltung für	"Vertiefte Kenntnisse in Mathematik"; Master (ab 2. Fachsemester)
Forschungsgebiet	Optimierung
Verantwortliche	Wirtschaftsmathematik, Math. V (Numerische Mathematik)
Lernziele	Die Vorlesung macht mit einem aktuellen, forschungsrelevanten Gebiet aus dem Bereich Optimierung vertraut.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus dem Bereich Optimierung, Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (4) mit Übungen (2)
LP	10
Arbeitsaufwand	Wöchentlich 4 h Vorlesung plus 4 h Nachbereitung = 120 h;
	2 h Übung plus 6 h Vor- und Nachbereitung = 120 h;
	40 h Prüfungsvorbereitung, 20 h Vor-/Nachbereiten in Semesterferien, Gesamt: 300 h.
Empfohlene	Basismodule
Vorkenntnisse	weitere empfohlene Vorkenntnisse laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min)
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der
	Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

n Mathematik (Seminar in Mathematics)
en wissenschaftlichen Einarbeitung in ein anspruchsvolles chema, z. B. durch Literaturrecherche in deutsch- und retrechniken der Arbeitsorganisation und -dokumentation ingemessener Präsentationstechniken (Tafel, Folie, Beamer, and anschaulicher Darstellung en Präsentationstechniken auf Zuhörerfragen angemessener fachlicher Fragen achlichen Fragen zur konstruktiven Kritik an einem Vortrag kan Vorträgen zu verwerten des Thema kurz, prägnant und einprägsam schriftlich
senschaftlichen Textsatzsystemen (z.B. LATEX) aspruchsvolles fachliches Thema oder eine fortgeschrittene ändigen Einarbeitung nach Literaturempfehlung (i. d. R. ne Literatur)
Präsentation von 45–75 Minuten Dauer vorbereitet und im
und über die Präsentation selbst wird im Plenum diskutiert eiten) wird zu jeder Präsentation mit einem wissenschaftlichen angefertigt und im Plenum verteilt
ing
ich
nhaltliche und präsentationstechnische Vorbereitung des
ungsmodule nach gesonderter Ankündigung
g (unbenotet)
diengänge Mathematik, Technomathematik, sit
eminar
thrien new aazk i s siae F

B. Spezialisierungsmodule

Spezialkenntnisse in Mathematik

Modulname	Spezialkenntnisse in Mathematik (Special skills in Mathematics)
Modultyp	Spezialisierungsmodul Master (ab 2. Fachsemester)
Forschungsgebiet	Alle Forschungsgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	Die Vorlesung vermittelt kompakt spezialisierte forschungsrelevante mathematische Fertigkeiten.
Inhalt	Ein aktuelles, forschungsrelevantes Gebiet aus der Mathematik, in dem spezialisierte Techniken (besondere Beweistechniken, Modellierungsansätze, computergestützte Methoden,) zum Einsatz kommen oder bekannte Techniken aus verschiedenen Gebieten auf ungewöhnliche Weise kombiniert werden; Details im kommentierten Vorlesungsverzeichnis
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h; 1 h Übung plus 3 h Vor- und Nachbereitung = 60 h; 20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene Vorkenntnisse	laut kommentiertem Vorlesungsverzeichnis
Leistungsnachweise	mündliche Prüfung (20 min) Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für die Module C1 der Bachelorstudiengänge und A1 der Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	nach Bedarf

B. Spezialvorlesungen

Algebra / Zahlentheorie / Diskrete Mathematik

Veranstaltungstitel	Rationale Punkte auf Kurven (Rational Points on Curves)
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)
Forschungsgebiet	Algebra/Zahlentheorie
Verantwortliche	Computeralgebra
Lernziele	Eingehendes Verständnis der Problemstellung
	 Kenntnis der relevanten Tatsachen aus der algebraischen und arithmetischen Geometrie, insbesondere der Strukturaussagen über die Menge der rationalen Punkte auf einer algebraischen Kurve
	Kenntnis verschiedener Lösungsmethoden und ihrer Vor- und Nachteile
	Fähigkeit, diese Methoden auf konkrete Beispiele anzuwenden
Inhalt	Grundlagen: Fragestellung, geometrische Interpretation, Strukturaussagen
	Jacobische Varietäten, Satz von Mordell-Weil
	Methoden für die Bestimmung der Mordell-Weil-Gruppe
	Methode von Chabauty
	Mordell-Weil-Sieb
	Weitere Methoden
	Beispiele
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h;
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;
	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene	Algebraische Kurven, algebraische Zahlentheorie
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur;
\/aw	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Module B1 und B2 für den Masterstudiengang Mathematik
Angebotsturnus	etwa alle zwei Jahre
Angebotsturius	CIVA AND ENGINEE

B. Spezialvorlesungen

Veranstaltungstitel	Stochastische Dynamische Optimierung (Stochastic Dynamic Optimization)
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)
Forschungsgebiet	Numerik
Verantwortliche	Angewandte Mathematik (Mathe V)
Lernziele	Erfolgreiche Studierende besitzen
	 Kentnisse über wesentliche Problemstellungen der Stochastischen dynamischen Optimierung
	 Wissen über die Struktur der optimalen Strategie als Feedback-Abbildung
	 Beherrschung wichtigster numerischer Lösungsverfahren, insbesondere für linear quadratische Probleme (Riccati Gleichung) und die globale Lösung nichtlinearer Probleme mittels numerischer dynamischer Programmierung
	 die Fähigkeit zu deren Computerimplementierung in einer h\u00f6heren Programmiersprache
	 Überblick über Beispiele stochastischer dynamischer Optimierung in technischen und ökonomischen Anwendungen
Inhalt	Stochastische Kontrollsysteme
	Formulierung und Beispiele stochastischer dynamischer Optimierungsprobleme
	Prinzip der dynamischen Programmierung
	Struktur der optimalen Strategie
	Numerische dynamische Programmierung
	Linear-quadratische Probleme und numerische Lösung der Riccati-Gleichung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h;
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;
	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene	Module "Einführung in die Numerische Mathematik" und "Einführung in die Optimierung"
Vorkenntnisse	
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Modul B1 für die
	Masterstudiengänge
	Mathematik, Technomathematik und Wirtschaftsmathematik;
A	Modul B2 für den Masterstudiengang Mathematik
Angebotsturnus	etwa alle zwei Jahre

Veranstaltungstitel	Singulär gestörte Differentialgleichungen (Singular Perturbation Theory)						
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)						
Forschungsgebiet	Numerik						
Verantwortliche	Ingenieurmathematik						
Lernziele	Erfolgreiche Studierende besitzen						
	 die Kenntnis wesentlicher Standard-Problemtypen der singulär gestörten Differentialgleichungen, 						
	 eine Beherrschung der wichtigsten theoretisch bzw. praktisch interessanten Lösungsansätze, 						
	 die Fähigkeit aus chemischen Reaktionsgleichungen die zugehörigen Differentialgleichungen herzuleiten, 						
	 die F\u00e4higkeit zur Identifikation, Modellierung und L\u00f6sung von praktischen Problemstellungen singul\u00e4r gest\u00f6rter Differentialgleichungen. 						
Inhalt	Anfangswertprobleme vom Typ der starken Dämpfung						
	Der O'Malley/Hoppensteadt Ansatz						
	 Fehlerabschätzungen 						
	 Anwendung auf Reaktionskinetik mit Enzymen 						
	Anfangswertprobleme vom oszillatorischen Typ						
	Die Krylov/Bogoliubov Mittelung						
	Die Mehrskalen Technik						
	 Fehlerabschätzungen 						
	 Anwendung auf ein Problem der Himmelsmechanik 						
Dauer	1 Semester						
Sprache	deutsch						
Lehrformen	Vorlesung (2) mit Übungen (1)						
LP	5						
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h;						
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;						
Empfohloss	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h. Modul "Einführung in die Differentialgleichungen"						
Empfohlene Vorkenntnisse	woddi "Eiridiridig iii die Dilieferitalgielchdigen						
Leistungsnachweise	mündliche Prüfung oder Klausur;						
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen						
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Modul B1 für die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik;						
	Modul B2 für den Masterstudiengang Mathematik						
Angebotsturnus	etwa alle drei Jahre						

Veranstaltungstitel	Numerik differential-algebraischer Gleichungen (Differential-algebraic equations=DAE)								
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)								
Forschungsgebiet	Numerik								
Verantwortliche	Ingenieurmathematik								
Lernziele	 Verständnis der grundliegenden Unterschiede zwischen (expliziten) gewöhnlichen Differentialgleichungen und differential-algebraischen Gleichungen (DAEs) Fähigkeit zur Abschätzung der maximal erzielbaren Qualität einer numerischen Lösung Fähigkeit zur Auswahl eines geeigneten numerischen Algorithmus inklusive Wissen über dessen grundlegendes Vorgehen Vorbereitung auf Bachelorarbeiten Fähigkeit zur numerischen Berechnung von DAEs aus Anwendungen in den Ingenieurwissenschaften mit existierenden Software-Paketen Vorbereitung auf Masterarbeiten 								
Inhalt	 Unterschiede zu gewöhnlichen Differentialgleichungen Lineare DAEs mit konstanten Koeffizientenmatrizen Welche Problemstellungen in den Anwendungen führen auf DAEs? Hierarchie von DAE-Klassen Differentiations- und Störungsindex Semi-explizite DAE-Systeme und Mechanische Systeme Diskretisierungsverfahren für semi-explizite DAEs vom Index 1 und 2 								
Dauer	1 Semester								
Sprache	deutsch								
Lehrformen	Vorlesung (2) mit Übungen (1)								
LP	5								
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung= 60 h; 1 h Übung plus 3 h Vor- und Nachbereitung = 60 h; 20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.								
Empfohlene	Module "Einführung in die Differentialgleichungen" und								
Vorkenntnisse	"Einführung in die Numerische Mathematik"								
Leistungsnachweise	mündliche Prüfung oder Klausur; Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen								
Verwendbarkeit Angebotsturnus	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Modul B1 für die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik; Modul B2 für den Masterstudiengang Mathematik etwa alle zwei Jahre								
/ ingebolaturnus	otha and zhor barro								

Veranstaltungstitel	Stochastische Lineare Optimierung (Stochastic Linear Optimization)								
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)								
Forschungsgebiet	Optimierung								
Verantwortliche	Wirtschaftsmathematik								
Lernziele	Erfolgreiche Studierende besitzen								
	 die Kenntnis wesentlicher Standard-Problemtypen der Stochastischen Linearen Optimierung 								
	 das Verständnis und Berherrschung der wichtigsten numerischen Lösungsverfahren für die Stochastische Lineare Optimierung, insbesondere L-shaped-Methode 								
	die Fähigkeit zu deren Computerimplementierung in einer höheren Programmiersprache								
	 die Fähigkeit zur Identifikation, Modellierung und Lösung von praktischen Problemstellungen der Stochastischen Linearen Optimierung 								
	 die Fähigkeit, Standard-Software zur Modellierung und Lösung Stochastischer Linearer Optimierungsaufgaben zu benutzen 								
Inhalt	Beispiele für Stochastische Lineare Optimierungsaufgaben								
	Deterministisches Äquivalent in extensiver Form								
	 Wert der stochastischen Lösung und erwarteter Wert perfekter Information 								
	Strukur von Zulässigkeitsmengen								
	Struktur der Optimalwertfunktion								
	Vollständige und einfache Kompensation								
	L-shaped-Methode für zwei- und mehrstufige Stochastische Lineare Programme								
	Probleme durch Ganzzahligkeitsforderungen								
Dauer	1 Semester								
Sprache	deutsch								
Lehrformen	Vorlesung (2) mit Übungen (1)								
LP	5								
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h;								
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;								
Empfohlene	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h. Modul "Einführung in die Optimierung"								
Vorkenntnisse	modal "Emilanding in die Optimiciang								
Leistungsnachweise	mündliche Prüfung oder Klausur;								
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen								
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Modul B1 für die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik;								
	Modul B2 für den Masterstudiengang Mathematik								
Angebotsturnus	etwa alle zwei Jahre								

Veranstaltungstitel	Innere Punkte Verfahren der Optimierung
	(Interior Point Methods for Optimization)
Veranstaltung für	"Spezialkenntnisse in Mathematik"; Master (ab 1. Fachsemester)
Forschungsgebiet	Optimierung
Verantwortliche	Ingenieurmathematik
Lernziele	Erfolgreiche Studierende besitzen
	 die Kenntnis wesentlicher Standard-Problemtypen der linearen und nichtlinearen Optimierung,
	 eine geometrische Veranschaulichung des Zusammenhangs von Inneren Punkte Verfahren und Barrieremethoden inklusive Zentralem Pfad und Pfadumgebungen,
	eine Beherrschung der wichtigsten theoretisch bzw. praktisch interessanten Innere Punkte Verfahren
	die Fähigkeit zu deren Computerimplementierung in einer höheren Programmiersprache
	 die Fähigkeit zur Identifikation, Modellierung und Lösung von praktischen Problemstellungen der Konvexen Optimierung
	 die Fähigkeit, Standard-Software zur Modellierung und Lösung Konvexer Optimierungsaufgaben zu benutzen.
Inhalt	Problemstellungen und Karush-Kuhn-Tucker-Bedingungen
	Konvexität
	Innere Punkte Verfahren für die Lineare Optimierung
	Innere Punkte Verfahren für die Quadratische Optimierung und die Nichtlineare Optimierung
Dauer	1 Semester
Sprache	deutsch
Lehrformen	Vorlesung (2) mit Übungen (1)
LP	5
Arbeitsaufwand	Wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h;
	1 h Übung plus 3 h Vor- und Nachbereitung = 60 h;
	20 h Prüfungsvorbereitung, 10 h Vor-/Nachbereiten in Semesterferien, Gesamt: 150 h.
Empfohlene Vorkenntnisse	Modul "Einführung in die Optimierung" oder "Nichtlineare Optimierung"
Leistungsnachweise	mündliche Prüfung oder Klausur;
	Prüfungsvorleistung: erfolgreiche Teilnahme an den Übungen
Verwendbarkeit	Wahlpflichtveranstaltung für Modul "Spezialkenntnisse in Mathematik"; Modul B1 für die Masterstudiengänge
	Mathematik, Technomathematik und Wirtschaftsmathematik;
	Modul B2 für den Masterstudiengang Mathematik
Angebotsturnus	etwa alle zwei Jahre

B. Spezialisierungsmodule

Lernen durch Lehren

Modulname	Lernen durch Lehren (Learning by Teaching)						
Modultyp	Spezialisierungsmodul Master						
Forschungsgebiet	alle Fachgebiete						
Modulverantwortliche	Studiengangsmoderator						
Lernziele	Fähigkeit zur didaktischen Aufbereitung eines mathematischen Stoffes						
	Fähigkeit zur Leitung eines Tutoriums						
	Fähigkeit zur Einschätzung der Leistung anderer Studierender						
Inhalt	Studierende halten regelmäßig ein Tutorium zu einer mathematischen Veranstaltung						
	 Studierende bereiten ihre Stunden regelmäßig selbst vor und korrigieren ggf. Hausaufgaben 						
	Sie erhalten dabei Unterstützung von den hauptberuflich in diesem Kurs Lehrenden						
Dauer	1 Semester						
Sprache	deutsch						
Lehrformen	Praktikum						
LP	5						
Arbeitsaufwand	Wöchentliches Tutorium je 2 h = 30 h;						
	wöchentliche Vorbereitung je 4 h = 60 h;						
	wöchentliche Nachbereitung inkl. Korrekturen je 4 h = 60 h.						
	Gesamt: 150 h.						
Empfohlene	keine						
Vorkenntnisse							
Leistungsnachweise	Vortrag, Diskussion						
Verwendbarkeit	Wahlpflichtmodul B2 für die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik						
Angebotsturnus	jedes Semester						

Modulname	Master-Praktikum
	(Practical Training for Master)
Modultyp	Alternatives Vertiefungs-/Spezialisierungsmodul, Master Mathematik
Fachgebiet	Jedes Gebiet der Angewandten Mathematik oder der Reinen Mathematik mit
	Anwendungsbezügen
Modulverantwortliche	Wirtschaftsmathematik
Lernziele	Sammlung von Erfahrungen in einem nicht-universitären Umfeld oder in einer universitären Arbeitsgruppe, Mitarbeit in Forschungsprojekten.
	 Anwendungsorientierte Umsetzung bisher erlernter mathematischer und/oder informatischer Kenntnisse.
	Abfassung eines kurzen Berichtes.
Erläuterung	Folgende alternative Möglichkeiten können gewählt werden:
	Wenn das Praktikum in einem Industrie- oder Dienstleistungsunternehmen stattfindet, sollte es eine studiennahe Tätigkeit beinhalten.
	 Wenn das Praktikum in einer universitären Arbeitsgruppe stattfindet, muss es Einblicke in die anwendungsorientierte Umsetzung mathematischer und/oder informatischer Methoden liefern.
	Die Praktikumstätigkeit wird von einem verantwortlichen Betreuer testiert (Praktikumszeugnis).
	 In beiden Fällen ist ein kurzer Bericht zu schreiben, der das Erreichen der Lernziele darstellt.
Dauer	1 Semester (vorzugsweise vorlesungsfreie Zeit)
Sprache	nach Absprache
Lehrformen	Praktikum
LP	10
Arbeitsaufwand	300 h, inklusive Abfassung des Berichts.
Empfohlene	Vertiefte Kenntnisse in Mathematik
Vorkenntnisse	
Leistungsnachweise	Testat (Praktikumszeugnis) und schriftlicher Bericht
Verwendbarkeit	Wahlpflichtmodul A2 für den Masterstudiengang Mathematik
	Wahlpflichtmodul B3 für die Masterstudiengänge Technomathematik und Wirtschaftsmathematik
Angebotsturnus	jedes Semester nach Bedarf

C. Masterarbeit

Modulname	Kolloquium zur Masterarbeit (Colloquium on Master Theses)
Modultyp	Seminar Master (ab 3. Fachsemester)
Forschungsgebiet	alle Fachgebiete
Modulverantwortliche	Studiengangsmoderator
Lernziele	Fähigkeit zur didaktischen Aufbereitung der eigenen wissenschaftlichen Arbeit (umfangreicher als ein Thema einer Bachelorarbeit) für eine zeitlich begrenzte Präsentation (Motivation, Themenauswahl, Schwerpunktsetzung, Kurzfassung, Veranschaulichung etc.)
	Fähigkeit zum kurzen und prägnanten Bericht über die eigene wissenschaftliche Arbeit
	Fähigkeit zur überzeugenden Verteidigung der eigenen wissenschaftlichen Aktivitäten
	Fähigkeit zur kritischen Hinterfragung fremder wissenschaftlicher Aktivitäten
Inhalt	 Studierende bereiten das Thema und die (bisherigen) Ergebnisse ihrer Masterarbeit für eine Präsentation auf Zu jeder Masterarbeit wird eine Präsentation von 45–75 Minuten Dauer vorbereitet und im Plenum vorgeführt
	Über die Präsentationsinhalte und über die Präsentation selbst wird im Plenum diskutiert
Dauer	1 Semester oder Blockveranstaltung
Sprache	deutsch, englische Vorträge möglich
Lehrformen	Hauptseminar (2)
LP	10
Arbeitsaufwand	Wöchentlich Seminar 2 h = 30 h; Wöchentliche Nachbearbeitung der fremden Präsentationen 2 h = 30 h; Vorbereitung der eigenen Präsentationen = 200 h; Vorbereitung auf Publikumsfragen 40 h; Gesamt: 300 h. Oder: Blockseminar mit vorheriger Vortragsprobe = 30 h Nachbearbeitung der fremden Präsentationen = 30 h; Vorbereitung der eigenen Präsentationen = 200 h; Vorbereitung auf Publikumsfragen 40 h; Gesamt: 300 h.
Empfohlene	Vertiefungsmodule nach gesonderter Ankündigung, Master-Hauptseminar in Mathematik,
Vorkenntnisse	Masterarbeit begonnen oder abgeschlossen
Leistungsnachweise	Vortrag, Diskussion
Verwendbarkeit	Pflichtmodul C2 für die Masterstudiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Angebotsturnus	jedes Semester

D. und E. Anwendungsfächer

Kompetenzziel des Anwendungsmodulbereichs in allen Fachstudiengängen der Mathematik ist die *Vertiefung* und/oder die *Verbreiterung* von bereits erworbenen Kompetenzen im Anwendungsfach.

Alle Module des Bachelor/Master-Studiengangs im Anwendungfach, die diesem Kompetenzziel dienen,¹ können zur Abdeckung des Modulbereichs Anwendungsfach in den Bachelor- und Master-Studiengängen Mathematik, Technomathematik (Anwendungsfächer = Informatik und Ingenieurwissenschaften) und Wirtschaftsmathematik (Anwendungsfächer = Informatik und Wirtschaftswissenschaften) benutzt werden. Die Kombinierbarkeit ergibt sich aus der jeweiligen Modulbeschreibung im Modulhandbuch des Anwendungsfachs.

Auf diese Weise kann das Studienprogramm im Anwendungsfach auf ganz verschiedene Bachelorbiographien sinnvoll angepasst werden: Repetitionen werden vermieden, und sowohl tiefgehende Spezialisierungen als auch aufzuholende Grundlagen können gleichermaßen in das Masterstudium integriert werden.

Der Prüfungsausschuss kann fachlich passende Module außerhalb des Angebots des jeweiligen Anwendungsfachs auf Antrag zulassen.

Mindestens zwei Drittel der erforderlichen Leistungspunkte müssen aus den fachwissenschaftlichen Modulen des jeweiligen Anwendungsfachs stammen.

Die Konsultation der Studienberatung wird empfohlen.

¹Im Zweifel entscheidet der Prüfungsausschuss auf Basis einer Gesamtbetrachtung des Studienprogramms im Bachelor- und Masterstudium. Der Prüfungsausschuss geht in der Regel bereits bei der Wahl eines Moduls, das neue Inhalte in das Studium einbringt, von einer Vertiefung bzw. Verbreiterung der Kompetenzen aus.

Teil III

Anhang

Anhang A: Generischer Studienplan Bachelor Mathematik

BA Mathematik Generischer Plan Stand 27.01.11

FS	Mathematik	SWS	ECTS	Anwendungsfach	SWS	ECTS	ECTS	
	A1 Analysis	V4+Ü2	9	E Anwendungsfach	V4+Ü2	9		
1	A2 Lineare Algebra	V4+Ü2	9				30	
	A5 Programmierkurs	V2+Ü1	3					
	A1 Analysis	V4+Ü2	9	E Anwendungsfach	V4+Ü2	9		
2	A2 Lineare Algebra	V4+Ü2	9				30	
	A6 Mathematik am Computer	V2+Ü1	3					
	A3 Vektoranalysis	V2+Ü1	5					
3	B-RM1-1 Aufbaumodul	V3+Ü2	8				29	
3	B-AM1-1 Aufbaumodul	V3+Ü2	8				29	
	B-AM1-2 / B-RM1-2 Aufbaumodul	V3+Ü2	8					
	A4 Funktionentheorie	V2+Ü1	5					
4	B-RM2 Aufbaumodul	V3+Ü2	8				29	
	B-AM2 Aufbaumodul	V3+Ü2	8					
	B-MP Aufbaumodul/Praktikum	V3+Ü2	8					
	C1 Vertiefungsmodul	V4+Ü2	10	E Anwendungsfach	V4+Ü2	9		
5	C2 Bachelor-Hauptseminar	S2	5				32	
	B-RM1-2 / B-AM1-2 Aufbaumodul	V3+Ü2	8					
	B-M Aufbaumodul	V3+Ü2	8	E Anwendungsfach	V4+Ü2	9		
6	D1 Bachelor-Arbeit		10				30	
	D2 Kolloquium zur Bachelor-Arbeit	S2	3					
	Mathematik Gesamt		144	Anwendungsfach Gesamt		36	180	

(Vollzeit)

FS	Mathematik	SWS	ECTS	Anwendungsfach	SWS	ECTS	ECTS	
	A1 Analysis	V4+Ü2	9	E Anwendungsfach	V4+Ü2	9		
1	A2 Lineare Algebra	V4+Ü2	9				30	
	A5 Programmierkurs	V2+Ü1	3					
	A1 Analysis	V4+Ü2	9	E Anwendungsfach	V4+Ü2	9		
2	A2 Lineare Algebra	V4+Ü2	9				30	
	A6 Mathematik am Computer	V2+Ü1	3					
	A3 Vektoranalysis	V2+Ü1	5					
3	B-RM1-1 Aufbaumodul	V3+Ü2	8				20	
J	B-AM1-1 Aufbaumodul	V3+Ü2	8				29	
	B-AM1-2 / B-RM1-2 Aufbaumodul	V3+Ü2	8			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
	A4 Funktionentheorie	V2+Ü1	5					
4	B-RM2 Aufbaumodul	V3+Ü2	8				29	
7	B-AM2 Aufbaumodul	V3+Ü2	8			+Ü2 9 +Ü2 9 +Ü2 9	29	
	B-MP Aufbaumodul/Praktikum	V3+Ü2	8					
	C1 Vertiefungsmodul	V4+Ü2	10	E Anwendungsfach	V4+Ü2	9		
5	C2 Bachelor-Hauptseminar	S2	5				32	
	B-RM1-2 / B-AM1-2 Aufbaumodul	V3+Ü2	8					
	B-M Aufbaumodul	V3+Ü2	8	E Anwendungsfach	V4+Ü2	9		
6	D1 Bachelor-Arbeit		10				30	
	D2 Kolloquium zur Bachelor-Arbeit	S2	3					
	Mathematik Gesamt		144	Anwendungsfach Gesamt		36	180	

(Teilzeit)

Anhang B: Generischer Studienplan Bachelor Technomathematik

BA Technomathematik Generischer Plan Stand 27.01.11

FS	Mathematik	SWS	ECTS	Informatik	SWS	ECTS	Ingenieurwissenschaft en	SWS	ECTS	ECTS	
	A1 Analysis	V4+Ü2	9	E1 Informatik für Mathematiker	V2+Ü2	5	FP1 Technische Mechanik 1	V3+Ü2	5		
1	A2 Lineare Algebra	V4+Ü2	9							31	
	A5 Programmierkurs	V2+Ü1	3								
2	A1 Analysis	V4+Ü2	9	E2 Datenstrukturen und Algorithmen	V4+Ü2	8	FP1 Technische Mechanik 2	V2+Ü2	4	30	
	A2 Lineare Algebra	V4+Ü2	9								
	A3 Vektoranalysis	V2+Ü1	5				FP2 Grundlagen der Elektrotechnik	V2+Ü1	4		
3	BP1 Numerik	V3+Ü2	8				FW1 Vertiefung	V2+Ü1	4	29	
	BP2 Gewöhnliche DGL	V3+Ü2	8								
	A4 Funktionentheorie	V2+Ü1	5	E3 Software-Praktikum	P4	6	FP2 Regelungstechnik	V2+Ü1	4		
4	BP3 Optimierung	V3+Ü2	8							31	
	BP4 Partielle DGL	V3+Ü2	8								
	C1 Vertiefungsmodul	V4+Ü2	10				FP3 Strömungsmechanik	V2+Ü2	5		
5	C2 Praktikumsseminar	P4+S2	7							30	
	BP5 Stochastik	V3+Ü2	8								
	BW1 Statistik	V3+Ü2	8				FW1 Vertiefung	V4+Ü2	8		
6	D1 Bachelor-Arbeit		10							29	
	D2 Kolloquium zur Bachelor-Arbeit	S2	3								
	Mathematik Gesamt		127	Informatik Gesamt		19	Ingenieur- wissenschaften Gesamt		34	180	

(Vollzeit)

FS	Mathematik	SWS	ECTS	Informatik	SWS	ECTS	Ingenieurwissenschaft en	SWS	ECTS	ECTS
1	A1 Analysis	V4+Ü2	9							18
	A2 Lineare Algebra	V4+Ü2	9							10
2	A1 Analysis	V4+Ü2	9							18
	A2 Lineare Algebra	V4+Ü2	9							
3	A3 Vektoranalysis	V2+Ü1	5				FP1 Technische Mechanik 1	V3+Ü2	5	18
	BP2 Gewöhnliche DGL	V3+Ü2	8							
4	A4 Funktionentheorie	V2+Ü1	5				FP1 Technische Mechanik 2	V2+Ü2	4	17
	BP4 Partielle DGL	V3+Ü2	8							
5	A5 Programmierkurs	V2+Ü1	3	E1 Informatik für Mathematiker	V2+Ü2	5	FP2 Grundlagen der Elektrotechnik	V2+Ü1	4	12
6				E2 Datenstrukturen und Algorithmen	V4+Ü2	8	FP2 Regelungstechnik	V2+Ü1	4	12
7	BP1 Numerik	V3+Ü2	8				FW1 Vertiefung	V4+Ü2	8	16
8	BP3 Optimierung	V3+Ü2	8	E3 Software-Praktikum	P4	6				14
9	BP5 Stochastik	V3+Ü2	8				FP3 Strömungsmechanik	V2+Ü2	5	13
10	BW1 Statistik	V3+Ü2	8				FW1 Vertiefung	V2+Ü1	4	12
11	C1 Vertiefungsmodul	V4+Ü2	10							17
	C2 Praktikumsseminar	P4+S2	7							
12	D1 Bachelor-Arbeit		10							13
	D2 Kolloquium zur Bachelor-Arbeit	S2	3							.5
	Mathematik Gesamt		127	Informatik Gesamt		19	Ingenieur- wissenschaften Gesamt		34	180

(Teilzeit)

Anhang C: Generischer Studienplan Bachelor Wirtschaftsmathematik

BA Wirtschaftsmathematik

Generischer Plan

Stand 27.01.11

FS	Mathematik	SWS	ECTS	Informatik	SWS	ECTS	Wirtschaft	SWS	ECTS	ECTS
	A1 Analysis	V4+Ü2	9	E1 Informatik für Mathematiker	V2+Ü2	5	F1 Wirtschafts- wissenschaften	V2+Ü1	5	
1	A2 Lineare Algebra	V4+Ü2	9							31
	A3 Programmierkurs	V2+Ü1	3							
2	A1 Analysis	V4+Ü2	9	E2 Datenstrukturen und Algorithmen	V4+Ü2	8	F1 Wirtschafts- wissenschaften	V2+Ü1	5	31
	A2 Lineare Algebra	V4+Ü2	9							
	BP1 Numerik	V3+Ü2	8				F1 Wirtschafts- wissenschaften	V2+Ü1	5	
3	BP2 Stochastik	V3+Ü2	8							29
	BW1 Gewöhnliche DGL/ Zahlenth. u. Alg. Strukt.	V3+Ü2	8							
	BP3 Optimierung	V3+Ü2	8				F1 Wirtschafts- wissenschaften	V2+Ü1	5	29
4	BP4 Statistik	V3+Ü2	8							
	Partielle DGL/Gra	BW: aphen- un		rerkalgorithmen	V3/4+Ü2	8				
5	C1 Vertiefungsmodul	V4+Ü2	10	E3 Software-Praktikum	P4	6	F1 Wirtschafts- wissenschaften	V2+Ü1	5	29
				E4 Datenbanken	V4+Ü2	8				
	C2 Bachelor-Hauptseminar	S2	5	G Anwendungsvertiefung (Vertiefungsvorlesung oder Praktikum)			*	8		
6	D1 Bachelor-Arbeit		10				F1 Wirtschafts- wissenschaften	V2+Ü1	5	31
	D2 Kolloquium zur Bachelor-Arbeit	S2	3							
	Mathematik Gesamt		107	Informatik Gesamt		35	Wirtschaft Gesamt		38	180

(Vollzeit)

FS	Mathematik	SWS	ECTS	Informatik	SWS	ECTS	Wirtschaft	SWS	ECTS	ECTS
1	A1 Analysis	V4+Ü2	9							18
	A2 Lineare Algebra	V4+Ü2	9							
2	A1 Analysis	V4+Ü2	9							18
	A2 Lineare Algebra	V4+Ü2	9							
3	BW1 Gewöhnliche DGL/ Zahlenth. u. Alg. Strukt.	V3+Ü2	8				F1 Wirtschafts- wissenschaften	V2+Ü1	5	13
4	Partielle DGL/Grapher	BW2 - und Netz	zwerkal	gorithmen	V3/4+Ü2	8	F1 Wirtschafts- wissenschaften	V2+Ü1	5	18
							F1 Wirtschafts- wissenschaften	V2+Ü1	5	
5	A5 Programmierkurs	V2+Ü1	3	E1 Informatik für Mathematiker	V2+Ü2	5	F1 Wirtschafts- wissenschaften	V2+Ü1	5	13
6				E2 Datenstrukturen und Algorithmen	V4+Ü2	8	F1 Wirtschafts- wissenschaften	V2+Ü1	5	13
7	BP1 Numerik	V3+Ü2	8	E4 Datenbanken	V4+Ü2	8				16
8	BP3 Optimierung	V3+Ü2	8	Anwendungsvertiefung	G (Vertiefung	jsvorlesu	ing oder Praktikum)	*	8	16
9	BP2 Stochastik	V3+Ü2	8	E3 Software-Praktikum	P4	6				14
10	BP4 Statistik	V3+Ü2	8				F1 Wirtschafts- wissenschaften	V2+Ü1	5	13
11	C1 Vertiefungsmodul	V4+Ü2	10							15
	C2 Bachelor-Hauptseminar	S2	5							
12	D1 Bachelor-Arbeit		10							13
	D2 Kolloquium zur Bachelor-Arbeit	S2	3							
	Mathematik Gesamt		107	Informatik Gesamt		35	Wirtschaft Gesamt		38	180

(Teilzeit)

Anhang D: Generischer Studienplan Master Mathematik

MA Mathematik Generischer Plan Stand 01.02.2007

FS	Mathematik	sws	ECTS	Anwendungsfach	sws	ECTS	ECTS
1	A1 Vertiefungsmodul	V4+Ü2	10	D Anwendungsfach	V4+Ü2	10	30
'	A1 Vertiefungsmodul	V4+Ü2	10				30
2	A1 Vertiefungsmodul	V4+Ü2	10	D Anwendungsfach	V4+Ü2	10	30
2	A2 Master-Hauptseminar	S2	10				30
	C1 Master-Arbeit		15				
3	B1 Spezialisierungsmodul	V2+Ü1	5				30
	A2 Master-Hauptseminar / Praktikum	S2	10				
	Spezialisierungsmo	B2 odul / "Lerne	n durch	Lehren"	V2+Ü1	5	
4	C1 Master-Arbeit		15				30
	C2 Kolloquium zur Master-Arbeit	S2	10				
	Mathematik Gesamt		95	Anwendungsfach Gesamt		25	120

(Vollzeit)

FS	Mathematik	sws	ECTS	Anwendungsfach	sws	ECTS	ECTS	
1	A1 Vertiefungsmodul	V4+Ü2	10	D Anwendungsfach	V2+Ü1	5	15	
2	A1 Vertiefungsmodul	V4+Ü2	10	D Anwendungsfach	V2+Ü1	5	15	
3	A1 Vertiefungsmodul	V4+Ü2	10	D Anwendungsfach	V2+Ü1	5	15	
4	A2 Master-Hauptseminar	S2	10	D Anwendungsfach	V2+Ü1	5	15	
5	Spezialisierungsmo	V2+Ü1	5	15				
3	A2 Master-Hauptseminar / Praktikum	S2	10				15	
6	B1 Spezialisierungsmodul	V2+Ü1	5				15	
O	C1 Master-Arbeit		10				13	
7	C1 Master-Arbeit		15				15	
8	C1 Master-Arbeit		5				15	
0	C2 Kolloquium zur Master-Arbeit	S2	10				15	
	Mathematik Gesamt		95	Anwendungsfach Gesamt		25	120	

(Teilzeit)

Anhang E: Generischer Studienplan Master Technomathematik

MA Technomathematik

Generischer Plan

Stand 01.02.2007

FS	Mathematik	sws	ECTS	Informatik	sws	ECTS	Ingenieur- wissenschaften	sws	ECTS	ECTS
1	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V4+Ü2	10				30
	A1 Vertiefungsmodul	V4+Ü2	10							30
2	A1 Vertiefungsmodul	V4+Ü2	10				E Ingenieur- wissenschaften	V2+Ü1	5	30
2	A2 Master- Hauptseminar	S 2	10				E Ingenieur- wissenschaften	V2+Ü1	5	30
3	C1 Master-Arbeit		15	B1 Spezialisierung	V2+Ü1	5				30
י					B3 Praktikum oder Hauptseminar in S2 10 nformatik oder Ingenieurwissenschaften				10	30
4	C1 Master-Arbeit		15				B2 Spezialisierung	V2+Ü1	5	30
٦	C2 Kolloquium zur Master-Arbeit	S2	10							30
	Mathematik Gesamt		80	Informatik Gesamt		15	Ingenieur- wissenschaften Gesamt		25	120

(Vollzeit)

FS	Mathematik	sws	ECTS	Informatik	SWS	ECTS	Ingenieur- wissenschaften	sws	ECTS	ECTS
1	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V2+Ü1	5				15
2	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V2+Ü1	5				15
3	A1 Vertiefungsmodul	V4+Ü2	10				E Ingenieur- wissenschaften	V2+Ü1	5	15
4	A2 Master- Hauptseminar	S2	10				E Ingenieur- wissenschaften	V2+Ü1	5	15
5				B1 Spezialisierung V2+Ü1 5						15
3				B3 Praktikum oder Hauptseminar(e) in S2 Informatik oder Ingenieurwissenschaften					10	13
6	C1 Master-Arbeit		10				B2 Spezialisierung	V2+Ü1	5	15
7	C1 Master-Arbeit		15							15
8	C1 Master-Arbeit		5							15
O	C2 Kolloquium zur Master-Arbeit	S2	10							13
	Mathematik Gesamt		80	Informatik Gesamt		15	Ingenieur- wissenschaften Gesamt		25	120

(Teilzeit)

Anhang F: Generischer Studienplan Master Wirtschaftsmathematik

MA Wirschaftsmathematik

Generischer Plan

Stand 01.02.2007

FS	Mathematik	sws	ECTS	Informatik	sws	ECTS	Wirtschaft	sws	ECTS	ECTS
1	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V4+Ü2	10				30
'	A1 Vertiefungsmodul	V4+Ü2	10							30
2	A1 Vertiefungsmodul	V4+Ü2	10				E Wirtschafts- wissenschaften	V2+Ü1	5	30
2	A2 Master- Hauptseminar	S2	10				E Wirtschafts- wissenschaften	V2+Ü1	5	30
	C1 Master-Arbeit		15	B1 Spezialisierung	V2+Ü1	5				
3				Praktikum Informatik ode		-			10	30
	C1 Master-Arbeit		15				B2 Spezialisierung	V2+Ü1	5	
4	C2 Kolloquium zur Master-Arbeit	S2	10							30
	Mathematik Gesamt		80	Informatik Gesamt		15	Wirtschaft Gesamt		25	120

(Vollzeit)

Stand 23.02.2007

FS	Mathematik	sws	ECTS	Informatik	sws	ECTS	Wirtschaft	sws	ECTS	ECTS
1	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V2+Ü1	5				15
2	A1 Vertiefungsmodul	V4+Ü2	10	D Informatik	V2+Ü1	5				15
3	A1 Vertiefungsmodul	V4+Ü2	10				E Wirtschafts- wissenschaften	V2+Ü1	5	15
4	A2 Master- Hauptseminar	S2	10				E Wirtschafts- wissenschaften	V2+Ü1	5	15
				B1 Spezialisierung	V2+Ü1	5				
5				Praktikun Informatik ode					10	15
6	C1 Master-Arbeit		10				B2 Spezialisierung	V2+Ü1	5	15
7	C1 Master-Arbeit		15							15
	C1 Master-Arbeit		5							
8	C2 Kolloquium zur Master-Arbeit	S2	10							15
	Mathematik Gesamt		80	Informatik Gesamt		15	Wirtschaft Gesamt		25	120

(Teilzeit)

Anhang G: Ausweisung von Schlüsselqualifikationen

In den Mathematik-Studiengängen ist die Vermittlung von Allgemeinen Schlüsselqualifikationen (ASQ) in die Fach-Module der Studiengänge integriert. Die folgenden Tabellen geben eine grobe Schätzung über Art und Umfang (Leistungspunkte = LP) der in den Mathematik-Studiengängen vermittelten ASQ. Die ASQ durch das Studium der Anwendungsfächer sind hier nicht berücksichtigt.

		atik mit Anwendungsfach		
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP AS
Teamfähigkeit	15 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	120	1
Kommunikationsfähigkeit, Vortragstechnik, Medientechnik	Bachelor-Hauptseminar	Präsentation	5	
dto.	Kolloquium zur Bachelor-Arbeit	Vortrag und Verteidigung	3	
Selbstständigkeit	Bachelor-Hauptseminar	Erschließung einer Originalarbeit	5	
dto.	Bachelor-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	10	
dto.	Kolloquium zur Bachelor-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	3	
Fremdsprachenkenntnisse	Bachelor-Hauptseminar	Verstehen englischsprachiger Originalarbeiten	5	
Praxiserfahrung	opt. Praktikum	Arbeitstätigkeit in der Praxis	8	0-
Computerkenntnisse	Programmierkurs	Programmieren in höherer Programmiersprache	3	
dto.	Mathematik am Computer	Anwendung von mathematischer Software	3	
Summe				25–3
	Bachelor 1	Technomathematik		
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP AS
Teamfähigkeit	13 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	104	1
Kommunikationsfähigkeit, Vortragstechnik,	Bachelor-Hauptseminar	Präsentation	5	
Medientechnik				
dto.	Kolloquium zur Bachelor-Arbeit	Vortrag und Verteidigung	3	
Selbstständigkeit	Praktikumsseminar	Aufarbeitung der Grundlagen eines Projekts	5	
dto.	Bachelor-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	10	
dto.	Kolloquium zur Bachelor-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	3	
Fremdsprachenkenntnisse	Praktikumsseminar	Verstehen englischsprachiger Originalarbeiten	7	
Computerkenntnisse	Programmierkurs	Programmieren in höherer Programmiersprache	3	
Computerkenntnisse	Software-Praktikum	Programmieren eines größeren Projekts	6	
Summe				3
	Bachelor Wi	rtschaftsmathematik		
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP AS
Teamfähigkeit	10 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	94	1
Kommunikationsfähigkeit, Vortragstechnik, Medientechnik	Bachelor-Hauptseminar	Präsentation	5	
dto.	Kolloquium zur Bachelor-Arbeit	Vortrag und Verteidigung	3	
Selbstständigkeit	Bachelor-Hauptseminar	Erschließung einer Originalarbeit	5	
dto.	Bachelor-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	10	
dto.	Kolloquium zur Bachelor-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	3	
Fremdsprachenkenntnisse	Bachelor-Hauptseminar	Verstehen englischsprachiger Originalarbeiten	5	
Praxiserfahrung	opt. Praktikum	Arbeitstätigkeit in der Praxis	10	0-
Computerkenntnisse	Programmierkurs	Programmieren in höherer Programmiersprache	3	Í
Summe	-9	3		23–2

Cablinaalau - Pitta-P		atik mit Anwendungsfach		10.40
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP ASC
Teamfähigkeit	5 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	40	į
Kommunikationsfähigkeit, Vortragstechnik, Medientechnik	1–2 Master-Hauptseminare	Präsentation	10–20	1–2
dto.	Kolloquium zur Master-Arbeit	Vortrag und Verteidigung	10	1
Selbstständigkeit	1-2 Master-Hauptseminare	Erschließung einer Originalarbeit	10–20	1–2
dto.	Master-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	30	6
dto.	Kolloquium zur Master-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	10	1
Fremdsprachenkenntnisse	1-2 Master-Hauptseminare	Verstehen englischsprachiger Originalarbeiten	10–20	1–2
Lehrerfahrung	Lernen durch Lehren	Praktische universitäre Lehrtätigkeit	5	2
Praxiserfahrung	opt. Praktikum	Arbeitstätigkeit in der Praxis	0-10	0-5
Summe				19–23
	Master T	echnomathematik		
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP ASC
Teamfähigkeit	3 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	30	3
Kommunikationsfähigkeit, Vortragstechnik, Medientechnik	1–2 Master-Hauptseminare	Präsentation	10	1–2
dto.	Kolloquium zur Master-Arbeit	Vortrag und Verteidigung	10	1
Selbstständigkeit	1-2 Master-Hauptseminare	Erschließung einer Originalarbeit	10	1–2
dto.	Master-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	30	6
dto.	Kolloquium zur Master-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	10	1
Fremdsprachenkenntnisse	1-2 Master-Hauptseminare	Verstehen englischsprachiger Originalarbeiten	10	1–2
Lehrerfahrung	Lernen durch Lehren	Praktische universitäre Lehrtätigkeit	5	2
Praxiserfahrung	opt. Praktikum	Arbeitstätigkeit in der Praxis	0-10	0-5
Summe				17–21
	Master Wi	rtschaftsmathematik		
Schlüsselqualifikation	Modul	Relevante Tätigkeit	LP gesamt	LP ASC
Teamfähigkeit	3 Vorlesungen/Übungen	Teambearbeitung der Hausaufgaben empfohlen	30	3
Kommunikationsfähigkeit, Vortragstechnik, Medientechnik	1–2 Master-Hauptseminare	Präsentation	10	1–2
dto.	Kolloquium zur Master-Arbeit	Vortrag und Verteidigung	10	1
Selbstständigkeit	1–2 Master-Hauptseminare	Erschließung einer Originalarbeit	10	1–2
dto.	Master-Arbeit	Literaturrecherche, Konzeption eines längeren Textes	30	6
dto.	Kolloquium zur Master-Arbeit	Vorbereitung auf Fragen in verwandten Fachgebieten	10	1
Fremdsprachenkenntnisse	1–2 Master-Hauptseminare	Verstehen englischsprachiger Originalarbeiten	10	1–2
Lehrerfahrung	Lernen durch Lehren	Praktische universitäre Lehrtätigkeit	5	2
Praxiserfahrung	opt. Praktikum	Arbeitstätigkeit in der Praxis	0–10	0-5

Im Allgemeinen wird versucht, die Studierenden entsprechend ihren individuellen Bedürfnissen beim Erwerb von ASQ zu fördern.

Summe

17–21